文章代码来源:《deep learning on keras》,非常好的一本书,大家如果英语好,推荐直接阅读该书,如果时间不够,可以看看此系列文章。
这次我们要讲的东西是一个一般的攻击和解决任何机器学习问题的蓝图,将你在本章学到的:问题定义、评估、特征工程、解决过拟合全部联系起来。
定义问题和组装数据集
首先,你必须这样定义手头的问题:
- 你要输入的数据是什么样子?你想要预测的是什么?你只能预测某些事情,例如你在电影评论和感情注释数据都有的时候可以来对电影的评论进行分类。常常数据是限制因素(除非你有方法去让被人帮你手机数据)
- 你手头面临的是什么类型的问题,是二分类吗?多分类吗?标量回归问题吗?向量回归问题吗?多分类多标签分类问题吗?还有一些其它的,如积累,泛化或是强化学习?弄清这些问题类型将会引导你选择模型框架,损失函数等等。
在你弄清输入输出是什么和你要用什么数据之前, 你是无法到下一阶段的。注意下面这些假设: - 你假设你的输出能被你所给的输入所预测
- 你假设你的数据已经足以解释输入和输出之间的关系。
在你有有效的模型之前,这些都只不过是假设罢了,等到被证实或是被证伪。不是所有的问
订阅专栏 解锁全文
14万+

被折叠的 条评论
为什么被折叠?



