贝叶斯地理统计模型INLA
本次博客主要讲述如何使用R-INLA软件进行空间分析,通过随机嵌套偏微分方程方法和集成的嵌套Laplace渐进法可为潜在高斯随机场模型中的边际分布提供准确而有效的估计。近年来已经广泛应用于空间流行病学领域。
由于笔者水平有限,关于理论部分,可前往link,针对数学公式及理论部分,这里不赘述,简化数学公式,强调如何应用,及在R语言里面如何实现。
安装INLA包
INLA官网The R-INLA project
如果在R里面下载速度非常慢,可以去 Index source 下载最新版Windows R-INLA 3.6里面,直接下载安装包
# 稳定版
install.packages("INLA", repos=c(getOption("repos"), INLA=&
本文介绍了如何在R中使用INLA软件进行空间分析,特别是通过贝叶斯方法处理高斯随机场模型,以解决空间流行病学中的相关性问题。文章通过降雨数据实例展示了如何安装INLA包,处理空间自相关性,以及构建和验证INLA模型的过程。
订阅专栏 解锁全文
973

被折叠的 条评论
为什么被折叠?



