贝叶斯地理统计模型R-INLA-1

本文介绍了如何在R中使用INLA软件进行空间分析,特别是通过贝叶斯方法处理高斯随机场模型,以解决空间流行病学中的相关性问题。文章通过降雨数据实例展示了如何安装INLA包,处理空间自相关性,以及构建和验证INLA模型的过程。
摘要由CSDN通过智能技术生成

贝叶斯地理统计模型INLA

本次博客主要讲述如何使用R-INLA软件进行空间分析,通过随机嵌套偏微分方程方法和集成的嵌套Laplace渐进法可为潜在高斯随机场模型中的边际分布提供准确而有效的估计。近年来已经广泛应用于空间流行病学领域。

由于笔者水平有限,关于理论部分,可前往link,针对数学公式及理论部分,这里不赘述,简化数学公式,强调如何应用,及在R语言里面如何实现。

安装INLA包

INLA官网The R-INLA project
如果在R里面下载速度非常慢,可以去 Index source 下载最新版Windows R-INLA 3.6里面,直接下载安装包

# 稳定版
 install.packages("INLA", repos=c(getOption("repos"), INLA=&
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值