Prediction
上一期我们介绍了如何来评估INLA模型,因为空间位置点的预测需要验证。那整个流程走完以后,最后一步就是对其他地区进行预测。
我们可以通过计算新位置的投影矩阵,然后将投影矩阵乘以空间场值,将这些值投影到不同的位置。例如,我们可以如下计算矩阵newloc中位置处的空间场的后均值:
A test
# projector
newloc <- cbind(c(-90, -78, 18), c(20, 20, 10))
Aproj <- inla.spde.make.A(Mesh, loc = newloc)
a=Aproj %*% fit$summary.random$w$mean
a
[,1] [,2]
[1,] -90 20
[2,] -78 20
[3,] 18 10
研究区域的空间grid
使用inla.mesh.projector()和inla.mesh.project()函数在不同位置投影空间场值。首先,我们需要使用inla.mesh.projector()函数为新位置计算投影矩阵。我们可以在参数loc中指定位置,也可以
本文介绍了如何利用INLA模型进行空间位置预测,包括计算新位置的投影矩阵,将空间场值投影到不同位置,以及使用`inla.mesh.projector`和`inla.mesh.project`函数进行空间分析。后续还将涉及回归参数和影响因素效应的考虑。
订阅专栏 解锁全文
629

被折叠的 条评论
为什么被折叠?



