机器学习在时间序列数据上应用
随着疫情的变化,急性传染病数据经常会随时间变化,我们通过对每天传染病的记录,就形成了时间序列数据,周期可以是天,周,月,年。目前我们经常会用到ARIMA来预测疾病在未来的变化趋势。

image.png
但是随着机器学习的广泛应用,在时间序列上,也可以采用机器学习发方法去预测,结果比传统的ARIMA EST更加快速,简洁,准确。
这次将要介绍关于的时间序列预测的Modeltime包,旨在加快模型评估,选择和预测的速度。modeltime通过将tidymodels机器学习软件包生态系统集成到简化的工作流中以进行tidyverse预测来实现此目的。modeltime结合了机器学习模型,经典模型和自动化模型等。

image.png
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



