Caret 出现traning或者Testing 数据集准确度100%

本文探讨了在R的caret包中,当特征X中的某些变量与目标变量Y高度一致时,可能导致机器学习模型(如逻辑回归)预测准确率达到100%的问题,并提供了实例和解决方案。
摘要由CSDN通过智能技术生成

1.问题

在R 使用caret进行机器学习模型构建时候。针对二分类问题,会发现我们的预测值准确度达到100%
即,可以准确对目标进行分类。

image.png

或者在进行logistics回归时候,发现glm方程输出各个变量的p值都是1,z值是0.

image.png

2.原因

出现这样问题的原因是,我们的x变量里面一个或者几个变量是与y分类变量一致。
即,譬如y为Yes(32个),No(108个),那么x是连续性变量,x<3有 32个,大于3的有108个。与y分布保持一致。

3.例子

譬如我们利用mdrrDescr数据,产生一个y。这个y是根据Ms>2.12变量转换来的.
或者再增加一个x,等于Yes的x均值在1.2左右。等于No的x均值在12左右。<

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值