1.问题
在R 使用caret进行机器学习模型构建时候。针对二分类问题,会发现我们的预测值准确度达到100%
即,可以准确对目标进行分类。

image.png
或者在进行logistics回归时候,发现glm方程输出各个变量的p值都是1,z值是0.

image.png
2.原因
出现这样问题的原因是,我们的x变量里面一个或者几个变量是与y分类变量一致。
即,譬如y为Yes(32个),No(108个),那么x是连续性变量,x<3有 32个,大于3的有108个。与y分布保持一致。
3.例子
譬如我们利用mdrrDescr数据,产生一个y。这个y是根据Ms>2.12变量转换来的.
或者再增加一个x,等于Yes的x均值在1.2左右。等于No的x均值在12左右。<
本文探讨了在R的caret包中,当特征X中的某些变量与目标变量Y高度一致时,可能导致机器学习模型(如逻辑回归)预测准确率达到100%的问题,并提供了实例和解决方案。
订阅专栏 解锁全文
269

被折叠的 条评论
为什么被折叠?



