预测三分类变量模型的ROC介绍

我们对Logistics回归很熟悉,预测变量y为二分类变量,然后对预测结果进行评估,会用到2*2 Matrix,计算灵敏度、特异度等及ROC曲线,判断模型预测准确性。

但是如果遇到y为三分类变量,那么会得到3*3 Matrix 那该选用什么指标进行评估呢?

答案:macro-average and micro-average

接下来,我们将介绍如何建立模型预测三分类变量,及对模型准确性进行评估。

1.模型构建

我们根据 iris数据集中的 Species三分类变量,建立多元回归模型,根据花的特征预测Species种类,其中我们添加xv新变量;
首先我们对 iris数据集进行拆分成 Training与Testing两个数据集,Training用于模型构建。

# https://stackoverflow.com/questions/59205776/random-forest-svm-and-multinomial-logistic-regression-with-r

library(tidyverse)
library(randomForest)
set.seed(123)
head(iris)
df=
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值