我们对Logistics回归很熟悉,预测变量y为二分类变量,然后对预测结果进行评估,会用到2*2 Matrix,计算灵敏度、特异度等及ROC曲线,判断模型预测准确性。
但是如果遇到y为三分类变量,那么会得到3*3 Matrix 那该选用什么指标进行评估呢?
答案:macro-average and micro-average
接下来,我们将介绍如何建立模型预测三分类变量,及对模型准确性进行评估。
1.模型构建
我们根据 iris数据集中的 Species三分类变量,建立多元回归模型,根据花的特征预测Species种类,其中我们添加xv新变量;
首先我们对 iris数据集进行拆分成 Training与Testing两个数据集,Training用于模型构建。
# https://stackoverflow.com/questions/59205776/random-forest-svm-and-multinomial-logistic-regression-with-r
library(tidyverse)
library(randomForest)
set.seed(123)
head(iris)
df=
订阅专栏 解锁全文
566

被折叠的 条评论
为什么被折叠?



