lijunuu
码龄14年
关注
提问 私信
  • 博客:12,172
    12,172
    总访问量
  • 6
    原创
  • 650,407
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2011-03-23
博客简介:

lijunuu的专栏

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    0
    当月
    0
个人成就
  • 获得4次点赞
  • 内容获得0次评论
  • 获得1次收藏
创作历程
  • 2篇
    2017年
  • 5篇
    2011年
TA的专栏
  • it
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

php中array_merge和+的区别

php中array操作的区别
原创
发布博客 2017.02.28 ·
397 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

php-fpm配置详解

php-fpm配置详解一、php-fpm和nginx的交互nginx通过ip和端口号和php-fpm进行交换二、CGI、FastCGI、php-fpm 之间的关系CGI:是 Web Server 与 Web Application 之间数据交换的一种协议。FastCGI:同 CGI,是一种通信协议,但比 CGI 在效率上做了一些优化。同样,SCGI 协议与 FastCGI 类似。PHP-C
翻译
发布博客 2017.02.28 ·
377 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

特征方程

特征方程:这要是符合如下形式的递推式都可以把递推式变成等比数列。递推式:X(n+2)=C1X(n+1)+C2X(n)   (1)假设两个数 r,s有如下式子成立:X(n+2)-rX(n+1)=s[X(n+1)-rXn]    (2)  把(2)式变化为如下:X(n+2)=(s+r)X(n+1)-srXn   (3)  对比:(1)式和(2)式得出下面两个值:C1
原创
发布博客 2011.12.28 ·
6937 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

动态规划与分治法的区别和联系

动态规划是通过组合子问题的解来解决整个大问题。各个子问题是不是独立的,也就是各个子问题包含公共子问题。它可以避免遇到的子问题的重复求解。分治法是把大问题分解成一些相互独立的子问题,递归的求解这些子问题然后将他们合并来得到整个问题的解。
原创
发布博客 2011.12.26 ·
3136 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

最大公约数求解

求解最大公约的方方法有很多种:(1)使用比较传统的方法,使用数学里的辗转相除的方法。       求解a和b的最大公约数可以a>b时:写成b=a*k+c,这时a和b的最大公约数变成a和c的最大公约数,因为上述等式的左右两边都可以被a和b的最大公约数整除所以c也可以被整除。  根据上面的方法一步一步求解就可以搞定,方法的思想是大数规模一步一步变小。  代码一:  int gc
原创
发布博客 2011.12.26 ·
490 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单件模式

单件模式:单件模式就是共享一个对象,一个类只能产生一个对象。但是对于多线程程序来讲要防止产生多个对象。实现的方法是:通过使用私有的构造函数实现。例子:/** * 单件模式的特点是只创建一次类的对象,其中构造函数必须是私有的类型这样才能保证 * 还有一点是如果是多线程的情况下必须保证线程的的安全保证只创建一个实例,这个是非常重要的。 *  * @author
原创
发布博客 2011.12.26 ·
494 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

命令模式

命令模式:(1)把所要完成的所有类,设计出统一的接口及操作函数。(2)各个操作类实现上面的接口。并且实现类本身的操作。(3)定义一个类,把所有的实现的类通过统一的接口来实现本身的操作。例子:(1)统一接口public interface Command {public void execute();}(2)功能的实现功能类:public clas
原创
发布博客 2011.12.26 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏