每天写一点代码----计数排序。

      计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。

      注意与基数排序区分,这是两个不同的排序

      计数排序算法不是一个基于比较的排序算法,而且一种稳定的排序算法。

      算法思想

计数排序对输入的数据有附加的限制条件:(来自百度百科)
1、输入的线性表的元素属于有限偏序集S;
2、设输入的线性表的长度为n,|S|=k(表示集合S中元素的总数目为k),则k=O(n)。
在这两个条件下,计数排序的复杂性为O(n)。
计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x的元素的个数。一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。
假设输入的线性表L的长度为n,L=L1,L2,..,Ln;线性表的元素属于有限偏序集S,|S|=k且k=O(n),S={S1,S2,..Sk};则计数排序可以描述如下:
1、扫描整个集合S,对每一个Si∈S,找到在线性表L中小于等于Si的元素的个数T(Si);
2、扫描整个线性表L,对L中的每一个元素Li,将Li放在输出线性表的第T(Li)个位置上,并将T(Li)减1.

/**
 * 
 * 《算法导论》8.2 计数排序 线性排序算法<br>
 * 
 * <pre>
 * 计数排序假设<b>n个输入元素的每一个都是介于0到k之间的整数。</b>
 * k为某个整数,k = O(n)时。计数排序的运行时间复杂度为Θ(n)
 * 
 * @author likebamboo
 * @create 2013-10-13
 * @see http://bbs.coderli.com/thread-1668-1-1.html , http://blog.csdn.net/zhangkaihang/article/details/6860709
 * 
 */
public class CountSort {

	/**
	 * 待排序数组
	 */
	private static final int[] sortArr = new int[] { 6, 2, 4, 1, 5, 9, 6, 8 };

	/**
	 * 待排序数组中元素的上界,
	 */
	private static final int K = 10;

	public static void main(String[] args) {
		int[] countArr = new int[K];// 计数数组
		int[] outArr = new int[sortArr.length];// 输出数组。

		// 首先给待排序中的元素计数
		for (int i = 0; i < sortArr.length; i++) {
			countArr[sortArr[i]] += 1;
		}

		// 其实代码写到此,已经可以输出待排序数组的正确顺序了(如下注释的代码),
		// 但是很多时候待排序的数组并不是以及简单的整型数字,而是对象,而且还需要保持排序的稳定性,那就让我们接着往下看吧。
		/*
		 * for (int i = 0; i < countArr.length; i++) { 
		 * 		if (countArr[i] > 0) {
		 *			for (int j = 0; j < countArr[i]; j++) {
		 *		 		System.out.print(i + "\t"); 
		 *			}
		 * 		}
		 * } 
		 * System.out.println();
		 */

		// 计算排序后元素位置
		for (int i = 1; i < countArr.length; i++) {
			countArr[i] = countArr[i - 1] + countArr[i];
		}

		// 排序到输出数组
		for (int i = sortArr.length - 1; i >= 0; i--) {
			int item = sortArr[i];
			outArr[countArr[item] - 1] = item;
			countArr[item] -= 1;
		}

		for (int i : outArr) {
			System.out.print(i + " \t");
		}

	}

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值