计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。
注意与基数排序区分,这是两个不同的排序
计数排序算法不是一个基于比较的排序算法,而且一种稳定的排序算法。
算法思想
计数排序对输入的数据有附加的限制条件:(来自百度百科)
1、输入的线性表的元素属于有限偏序集S;
2、设输入的线性表的长度为n,|S|=k(表示集合S中元素的总数目为k),则k=O(n)。
在这两个条件下,计数排序的复杂性为O(n)。
计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x的元素的个数。一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。
假设输入的线性表L的长度为n,L=L1,L2,..,Ln;线性表的元素属于有限偏序集S,|S|=k且k=O(n),S={S1,S2,..Sk};则计数排序可以描述如下:
1、扫描整个集合S,对每一个Si∈S,找到在线性表L中小于等于Si的元素的个数T(Si);
2、扫描整个线性表L,对L中的每一个元素Li,将Li放在输出线性表的第T(Li)个位置上,并将T(Li)减1.
/**
*
* 《算法导论》8.2 计数排序 线性排序算法<br>
*
* <pre>
* 计数排序假设<b>n个输入元素的每一个都是介于0到k之间的整数。</b>
* k为某个整数,k = O(n)时。计数排序的运行时间复杂度为Θ(n)
*
* @author likebamboo
* @create 2013-10-13
* @see http://bbs.coderli.com/thread-1668-1-1.html , http://blog.csdn.net/zhangkaihang/article/details/6860709
*
*/
public class CountSort {
/**
* 待排序数组
*/
private static final int[] sortArr = new int[] { 6, 2, 4, 1, 5, 9, 6, 8 };
/**
* 待排序数组中元素的上界,
*/
private static final int K = 10;
public static void main(String[] args) {
int[] countArr = new int[K];// 计数数组
int[] outArr = new int[sortArr.length];// 输出数组。
// 首先给待排序中的元素计数
for (int i = 0; i < sortArr.length; i++) {
countArr[sortArr[i]] += 1;
}
// 其实代码写到此,已经可以输出待排序数组的正确顺序了(如下注释的代码),
// 但是很多时候待排序的数组并不是以及简单的整型数字,而是对象,而且还需要保持排序的稳定性,那就让我们接着往下看吧。
/*
* for (int i = 0; i < countArr.length; i++) {
* if (countArr[i] > 0) {
* for (int j = 0; j < countArr[i]; j++) {
* System.out.print(i + "\t");
* }
* }
* }
* System.out.println();
*/
// 计算排序后元素位置
for (int i = 1; i < countArr.length; i++) {
countArr[i] = countArr[i - 1] + countArr[i];
}
// 排序到输出数组
for (int i = sortArr.length - 1; i >= 0; i--) {
int item = sortArr[i];
outArr[countArr[item] - 1] = item;
countArr[item] -= 1;
}
for (int i : outArr) {
System.out.print(i + " \t");
}
}
}