二叉树遍历非递归实现

遍历是二叉树各种操作的基础,上一节给出的遍历算法是递归实现的,本节给出二叉树遍历的非递归实现,非递归实现需要使用前面讲到的数据结构——栈、队列来作为辅助空间。

  • 先序遍历
[cpp]  view plain copy
  1. int preorder_traverse(bitree bt, int (*visit)(elemtype e))  
  2. {  
  3.     sqstack     s;  
  4.     bitree      p;  
  5.   
  6.     init_stack(&s);  
  7.   
  8.     p = bt;  
  9.     while (p || !is_stack_empty(s)) {  
  10.         while (p) {                              /* 左结点依次进栈,向左走到尽头 */  
  11.             visit(p->data);  
  12.             push_stack(&s, p);  
  13.             p = p->lchild;  
  14.         }  
  15.         if (!is_stack_empty(s)) {  
  16.             pop_stack(&s, &p);                 /* 出栈 */  
  17.             p = p->rchild;  
  18.         }  
  19.     }  
  20.     return OK;  
  21. }  
根结点先进栈,访问结点值,左孩子依次进栈,直到最左的孩子进栈。然后栈顶指针出栈,退至上一层,然后访问右子树,右子树访问完成之后,退至上一层,直至栈空,节点访问完成。先序遍历访问结点值是在结点进栈时。理解此算法最好找一棵简单的树跟着程序走一遍,在纸上画出栈的进栈、出栈情况。
  • 中序遍历
[cpp]  view plain copy
  1. int inorder_traverse(bitree bt, int (*visit)(elemtype e))  
  2. {  
  3.     sqstack     s;  
  4.     bitree      p;  
  5.   
  6.     init_stack(&s);  
  7.   
  8.     p = bt;  
  9.     while (p || !is_stack_empty(s)) {  
  10.         while (p) {  
  11.             push_stack(&s, p);  
  12.             p = p->lchild;  
  13.         }  
  14.         if (!is_stack_empty(s)) {  
  15.             pop_stack(&s, &p);  
  16.             visit(p->data);  
  17.             p = p->rchild;  
  18.         }  
  19.     }  
  20.     return OK;  
  21. }  
中序遍历和先序遍历类似,只是访问结点值是在出栈的时候,而先序遍历是在进栈的时候。
  • 后序遍历
[cpp]  view plain copy
  1. int postorder_traverse(bitree bt, int (*visit)(elemtype e))  
  2. {  
  3.     sqstack     s;  
  4.     bitree      p, q;  
  5.   
  6.     init_stack(&s);  
  7.   
  8.     p = bt;  
  9.     q = NULL;  
  10.     while (p || !is_stack_empty(s)) {  
  11.         while (p) {  
  12.             push_stack(&s, p);  
  13.             p = p->lchild;  
  14.         }  
  15.         if (!is_stack_empty(s)) {  
  16.             get_top(s, &p);                     /* 取栈顶元素 */  
  17.             if (!p->rchild || p->rchild == q) { /* 如果p没有右孩子,或右孩子已经访问过 */  
  18.                 visit(p->data);  
  19.                 q = p;  
  20.                 p = NULL;  
  21.                 --s.top;/* 退栈 */  
  22.             }  
  23.             else  
  24.                 p = p->rchild;  
  25.         }  
  26.     }  
  27.     return OK;  
  28. }  
后序遍历和先序、中序类似,但要稍复杂一点,需要判断结点是否有右孩子和右孩子是否访问过。
  • 层次遍历
[cpp]  view plain copy
  1. int levelorder_traverse(bitree bt, int (*visit)(elemtype e))  
  2. {  
  3.     sqqueue     sq;  
  4.     bitree      cur;  
  5.       
  6.     init_queue(&sq);  
  7.   
  8.     if (bt) {  
  9.         in_queue(&sq, bt);  
  10.         while (!is_queue_empty(sq)) {  
  11.             out_queue(&sq, &cur);  
  12.             visit(cur->data);  
  13.   
  14.             if (cur->lchild)  
  15.                 in_queue(&sq, cur->lchild);  
  16.             if (cur->rchild)  
  17.                 in_queue(&sq, cur->rchild);  
  18.         }  
  19.     }  
  20.     return OK;  
  21. }  
层次遍历算法比较好理解,使用队列作为辅助空间,根节点首先进队列,如果队列不为空的话,访问结点值再出队列,然后左孩子进队列(如果有的话),右孩子进队列(如果有的话)。
  • 总结
遍历二叉树算法基本操作是访问结点,不论按哪一种次序进行遍历,对含n个结点的二叉树时间复杂度都为O(n)。
  • 算法实现源码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值