SkipList 跳表

为什么选择跳表

目前经常使用的平衡数据结构有:B树,红黑树,AVL树,Splay Tree, Treep等。

 

想象一下,给你一张草稿纸,一只笔,一个编辑器,你能立即实现一颗红黑树,或者AVL树

出来吗? 很难吧,这需要时间,要考虑很多细节,要参考一堆算法与数据结构之类的树,

还要参考网上的代码,相当麻烦。

 

用跳表吧,跳表是一种随机化的数据结构,目前开源软件 Redis 和 LevelDB 都有用到它,

它的效率和红黑树以及 AVL 树不相上下,但跳表的原理相当简单,只要你能熟练操作链表,

就能轻松实现一个 SkipList。

 

有序表的搜索

考虑一个有序表:


 

从该有序表中搜索元素 < 23, 43, 59 > ,需要比较的次数分别为 < 2, 4, 6 >,总共比较的次数

为 2 + 4 + 6 = 12 次。有没有优化的算法吗?  链表是有序的,但不能使用二分查找。类似二叉

搜索树,我们把一些节点提取出来,作为索引。得到如下结构:



 这里我们把 < 14, 34, 50, 72 > 提取出来作为一级索引,这样搜索的时候就可以减少比较次数了。

 我们还可以再从一级索引提取一些元素出来,作为二级索引,变成如下结构:

 

  

 

     这里元素不多,体现不出优势,如果元素足够多,这种索引结构就能体现出优势来了。

 

跳表

下面的结构是就是跳表:

 其中 -1 表示 INT_MIN, 链表的最小值,1 表示 INT_MAX,链表的最大值。

 

 

跳表具有如下性质:

(1) 由很多层结构组成

(2) 每一层都是一个有序的链表

(3) 最底层(Level 1)的链表包含所有元素

(4) 如果一个元素出现在 Level i 的链表中,则它在 Level i 之下的链表也都会出现。

(5) 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素。

 

跳表的搜索


 

例子:查找元素 117

(1) 比较 21, 比 21 大,往后面找

(2) 比较 37,   比 37大,比链表最大值小,从 37 的下面一层开始找

(3) 比较 71,  比 71 大,比链表最大值小,从 71 的下面一层开始找

(4) 比较 85, 比 85 大,从后面找

(5) 比较 117, 等于 117, 找到了节点。

 

具体的搜索算法如下: 

 

C代码  收藏代码
  1. /* 如果存在 x, 返回 x 所在的节点, 
  2.  * 否则返回 x 的后继节点 */  
  3. find(x)   
  4. {  
  5.     p = top;  
  6.     while (1) {  
  7.         while (p->next->key < x)  
  8.             p = p->next;  
  9.         if (p->down == NULL)   
  10.             return p->next;  
  11.         p = p->down;  
  12.     }  
  13. }  
 

 

跳表的插入

先确定该元素要占据的层数 K(采用丢硬币的方式,这完全是随机的)

然后在 Level 1 ... Level K 各个层的链表都插入元素。

例子:插入 119, K = 2


 

如果 K 大于链表的层数,则要添加新的层。

例子:插入 119, K = 4



丢硬币决定 K

插入元素的时候,元素所占有的层数完全是随机的,通过一下随机算法产生:

 

C代码  收藏代码
  1. int random_level()  
  2. {  
  3.     K = 1;  
  4.   
  5.     while (random(0,1))  
  6.         K++;  
  7.   
  8.     return K;  
  9. }  

 

相当与做一次丢硬币的实验,如果遇到正面,继续丢,遇到反面,则停止,

用实验中丢硬币的次数 K 作为元素占有的层数。显然随机变量 K 满足参数为 p = 1/2 的几何分布,

K 的期望值 E[K] = 1/p = 2. 就是说,各个元素的层数,期望值是 2 层。

 

 

跳表的高度。

n 个元素的跳表,每个元素插入的时候都要做一次实验,用来决定元素占据的层数 K,

跳表的高度等于这 n 次实验中产生的最大 K,待续。。。

 

跳表的空间复杂度分析

根据上面的分析,每个元素的期望高度为 2, 一个大小为 n 的跳表,其节点数目的

期望值是 2n。

 

跳表的删除

在各个层中找到包含 x 的节点,使用标准的 delete from list 方法删除该节点。

例子:删除 71



#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
  
typedef int key_t;
typedef int value_t;
typedef struct node_t
{
    key_t key;
    value_t value;
    struct node_t *forward[];
} node_t;
  
typedef struct skiplist
{
    int level;
    int length;
    node_t *header;
} list_t;
  
#define MAX_LEVEL   16
#define SKIPLIST_P  0.25
  
node_t* slCreateNode(int level, key_t key, value_t value)
{
    node_t *n = (node_t *)malloc(sizeof(node_t) + level * sizeof(node_t*));
    if(n == NULL) return NULL;
    n->key = key;
    n->value = value;
    return n;
}
  
list_t* slCreate(void)
{
    list_t *l = (list_t *)malloc(sizeof(list_t));
    int i = 0;
    if(l == NULL) return NULL;
  
    l->length = 0;
    l->level = 0;
    l->header = slCreateNode(MAX_LEVEL - 1, 0, 0);
    for(i = 0; i < MAX_LEVEL; i++)
    {
        l->header->forward[i] = NULL;
    }
    return l;
}
  
int randomLevel(void)
{
    int level = 1;
    while ((rand()&0xFFFF) < (SKIPLIST_P * 0xFFFF))
        level += 1;
    return (level<MAX_LEVEL) ? level : MAX_LEVEL;
}
  
value_t* slSearch(list_t *list, key_t key)
{
    node_t *p = list->header;
    int i;
  
    for(i = list->level - 1; i >= 0; i--)
    {
        while(p->forward[i] && (p->forward[i]->key <= key)){
            if(p->forward[i]->key == key){
                return &p->forward[i]->value;
            }
            p = p->forward[i];
        }
    }
    return NULL;
}
  
int slDelete(list_t *list, key_t key)
{
    node_t *update[MAX_LEVEL];
    node_t *p = list->header;
    node_t *last = NULL;
    int i = 0;
  
    for(i = list->level - 1; i >= 0; i--){
        while((last = p->forward[i]) && (last->key < key)){
            p = last;
        }
        update[i] = p;
    }
  
    if(last && last->key == key){
        for(i = 0; i < list->level; i++){
            if(update[i]->forward[i] == last){
                update[i]->forward[i] = last->forward[i];
            }
        }
        free(last);
        for(i = list->level - 1; i >= 0; i--){
            if(list->header->forward[i] == NULL){
                list->level--;
            }
        }
        list->length--;
    }else{
        return -1;
    }
  
    return 0;
}
  
int slInsert(list_t *list, key_t key, value_t value)
{
    node_t *update[MAX_LEVEL];
    node_t *p, *node = NULL;
    int level, i;
  
    p = list->header;
    for(i = list->level - 1; i >= 0; i--){
        while((node = p->forward[i]) && (node->key < key)){
            p = node;
        }
        update[i] = p;
    }
    if(node && node->key == key){
        node->value = value;
        return 0;
    }
  
    level = randomLevel();
    if (level > list->level)
    {
        for(i = list->level; i < level; i++){
            update[i] = list->header;
        }
        list->level = level;
    }
  
    node = slCreateNode(level, key, value);
    for(i = 0; i < level; i++){
        node->forward[i] = update[i]->forward[i];
        update[i]->forward[i] = node;
    }
    list->length++;
    return 0;
}
  
int main(int argc, char **argv)
{
    list_t *list = slCreate();
    node_t *p = NULL;
    value_t *val = NULL;
  
    //插入
    for(int i = 1; i <= 15; i++){
        slInsert(list, i, i*10);
    }
  
    //删除
    if(slDelete(list, 12) == -1){
        printf("delete:not found\n");
    }else{
        printf("delete:delete success\n");
    }
  
    //查找
    val = slSearch(list, 1);
    if(val == NULL){
        printf("search:not found\n");
    }else{
        printf("search:%d\n", *val);
    }
  
    //遍历
    p = list->header->forward[0];
    for(int i = 0; i < list->length; i++){
        printf("%d,%d\n", p->key, p->value);
        p = p->forward[0];
    }
  
    getchar();
    return 0;
}


http://www.cxphp.com/?p=234(Redis中c语言的实现)

http://imtinx.iteye.com/blog/1291165

http://kenby.iteye.com/blog/1187303

http://bbs.bccn.net/thread-228556-1-1.html

http://blog.csdn.net/xuqianghit/article/details/6948554(leveldb源码)

阅读更多
个人分类: NoSQL C/C++ Algorithm
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭