三、背包问题

*部分背包问题可有贪心法求解:计算Pi/Wi
 数据结构:
   w[i]:第i个背包的重量;
   p[i]:第i个背包的价值;

1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):

A.求最多可放入的重量。
NOIP2001 装箱问题
  有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
  procedure search(k,v:integer); {搜索第k个物品,剩余空间为v}
  var i,j:integer;
  begin
    if v<best then best:=v;
    if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
    if k<=n then begin
      if v>w[k] then search(k+1,v-w[k]);
      search(k+1,v);
    end;
  end;

l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v)       边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do  F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j] 为容量为I时取前j个背包所能获得的最大价值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ],  f[ i,j-1] }

C.求恰好装满的情况数。
DP:
Procedure update;
var j,k:integer;
begin
  c:=a;
  for j:=0 to n do
    if a[j]>0 then
        if j+now<=n then inc(c[j+now],a[j]);
  a:=c;
end;

2.可重复背包

A求最多可放入的重量。
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
状态转移方程为
   f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大价值。
USACO 1.2  Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
     f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] }  (0<=k<= i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*实现:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
  If i-problem[j].time>=0 Then
  Begin
    t:=problem[j].point+f[i-problem[j].time];
    If t>f[i] Then f[i]:=t;
  End;
Writeln(f[M]);
End.

C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procedure try(dep:integer);
  var i,j:integer;
  begin
    cal; {此过程计算当前系数的计算结果,now为结果}
    if now>n then exit; {剪枝}
    if dep=l+1 then begin {生成所有系数}
      cal;
      if now=n then inc(tot);
      exit;
    end;
    for i:=0 to n div pr[dep]  do  begin
      xs[dep]:=i;
      try(dep+1);
      xs[dep]:=0;
    end;
  end;

思路二,递归搜索效率较高
procedure try(dep,rest:integer);
  var i,j,x:integer;
  begin
    if (rest<=0) or (dep=l+1) then begin
      if rest=0 then inc(tot);
      exit;
    end;
    for i:=0 to rest div pr[dep] do
      try(dep+1,rest-pr[dep]*i);
  end;
{main: try(1,n); }

思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:


Procedure update;
var j,k:integer;
begin
  c:=a;
  for j:=0 to n do
    if a[j]>0 then
      for k:=1 to n div now do
        if j+now*k<=n then inc(c[j+now*k],a[j]);
  a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0;   {a[i]为背包容量为i时的放法总数}
while i<=n do begin
a[i]:=1; inc(i,now); end;  {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
  read(now);
  update; {动态更新}
end;
writeln(a[n]);

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值