LeetCode 4 — Median of Two Sorted Arrays (C++ Java Python)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dragon_dream/article/details/19355465

题目:http://oj.leetcode.com/problems/median-of-two-sorted-arrays/

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

题目翻译:

有两个有序数组A和B,大小分别为m和n。找到两个有序数组的中位数。总的运行时间复杂度应为O(log(m+n))。

分析:

        由于要求时间复杂度为O(log (m+n)),可参考二分查找的思想,先考虑一般情况,即查找第k大的数。

C++实现:

class Solution {
public:
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
    	int total = m + n;
    	if(total & 0x01)
    	{
    		return find_kth(A, m, B, n, total / 2 + 1);
    	}
    	else
    	{
    		return (find_kth(A, m, B, n, total / 2) +
    				find_kth(A, m, B, n, total / 2 + 1)) / 2.0;
    	}
    }

    double find_kth(int A[], int m, int B[], int n, int k)
    {
    	if(m > n)
    	{
    		return find_kth(B, n, A, m, k);
    	}
    	if(m == 0)
    	{
    		return B[k - 1];
    	}
    	if(k == 1)
    	{
    		return std::min(A[0], B[0]);
    	}

    	int pa = std::min(k / 2, m);
    	int pb = k - pa;
    	if(A[pa - 1] < B[pb - 1])
    	{
    		return find_kth(A + pa, m - pa, B, n, k - pa);
    	}
    	else if(A[pa - 1] > B[pb - 1])
    	{
    		return find_kth(A, m, B + pb, n - pb, k - pb);
    	}
    	else
    	{
    		return A[pa - 1];
    	}
    }
};

Java实现:

public class Solution {
    public double findMedianSortedArrays(int A[], int B[]) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
		int m = A.length;
		int n = B.length;
		int total = m + n;
		if ((total & 0x01) != 0) {
			return find_kth(A, m, B, n, total / 2 + 1);
		} else {
			return (find_kth(A, m, B, n, total / 2) + find_kth(A, m, B, n,
					total / 2 + 1)) / 2.0;
		}
	}

	public double find_kth(int A[], int m, int B[], int n, int k) {
		if (m > n) {
			return find_kth(B, n, A, m, k);
		}
		if (m == 0) {
			return B[k - 1];
		}
		if (k == 1) {
			return Math.min(A[0], B[0]);
		}

		int pa = Math.min(k / 2, m);
		int pb = k - pa;
		if (A[pa - 1] < B[pb - 1]) {
			return find_kth(Arrays.copyOfRange(A, pa, A.length), m - pa, B, n,
					k - pa);
		} else if (A[pa - 1] > B[pb - 1]) {
			return find_kth(A, m, Arrays.copyOfRange(B, pb, B.length), n - pb,
					k - pb);
		} else {
			return A[pa - 1];
		}
	}

	public static void main(String[] args) {
		int[] A = { 1, 3 };
		int[] B = { 2, 4 };
		Solution slt = new Solution();
		double result = slt.findMedianSortedArrays(A, B);
		System.out.println(result);
	}
}

Python实现:

class Solution:
    # @return a float
    def findMedianSortedArrays(self, A, B):
        m = len(A)
        n = len(B)
        total = m + n
        if total & 0x01:
            return self.find_kth(A, m, B, n, total / 2 + 1)
        else:
            return (self.find_kth(A, m, B, n, total / 2) + 
                    self.find_kth(A, m, B, n, total / 2 + 1)) / 2.0
    
    def find_kth(self, A, m, B, n, k):
        if m > n:
            return self.find_kth(B, n, A, m, k)
        if m == 0:
            return B[k - 1]
        if k == 1:
            return min(A[0], B[0])
        
        pa = min(k / 2, m)
        pb = k - pa
        if A[pa - 1] < B[pb - 1]:
            return self.find_kth(A[pa:], m - pa, B, n, k - pa)
        elif A[pa - 1] > B[pb - 1]:
            return self.find_kth(A, m, B[pb:], n - pb, k - pb)
        else:
            return A[pa - 1]

        感谢阅读,欢迎评论!

展开阅读全文

没有更多推荐了,返回首页