多重背包(二进制优化)+分组背包

http://poj.org/problem?id=3260

网上有篇很好的报告,觉得不错,就拷了些过来

网址:http://www.cppblog.com/Davidlrzh/articles/135614.html

题意:John去买东西,东西的价格是T(1 <= T <= 10000),John所在的地方有n(1 <= n <= 100)种的硬币,面值分别为V1, V2, ..., Vn (1 <= Vi <= 120)。John带了C1枚面值为V1的硬币,C2枚面值为V2的硬币,...,Cn枚面值为Vn的硬币(0 <= Ci <= 10000)。售货员那里每种硬币都有无限多个。问为了支付这个T,John给售货员的硬币数目加上售货员找回的零钱的硬币数目最少是多少。如果无法支付T,输出-1 。

解法:支付时硬币数量有限制,为多重背包问题,通过二进制方法转化为01背包求解。找零时,硬币数量无限制,为完全背包问题。对两问题分别求解,然后找出差额为T时,两者和的最小值即为所示。

其中:给钱上界为:T+maxValue^2,其中maxValue为最大硬币面值。证明:反证法。假设存在一种支付方案,John给的钱超过T+maxValue^2, 则售货员找零超过maxValue^2,则找的硬币数目超过maxValue个,将其看作一数列,求前n项和sum(n),根据鸽巢原理,至少有两 个对maxValue求模的值相等,假设为sum(i)和sum(j),i<j,则i+1...j的硬币面值和为maxValue的倍数,同理,John给的钱中也有 一定数量的硬币面值和为maxValue的倍数,则这两堆硬币可用数量更少的maxValue面值硬币代替,产生更优方案。

#pragma warning (disable:4786)  
#include<iostream>
#include <cstring>
#include <cmath>
using namespace std;
int n,m;
const int INF = 20000;
int dp1[INF+1];     //付钱dp数列
int dp2[INF+1];     //找钱dp数列
int v[102];
int c[102];   
int min(int x,int y){
	if(x<y)
		return x;
	else return y;
}
int main(){
	int i,j,k,n,t;
	while(~scanf("%d%d", &n, &t))
    {
		int sum=0;
		for(i=1;i<=n;i++)
			scanf("%d",&v[i]);
		sum=10000;      //找钱10000就能ac,无法证明其正确性
		for(i=1;i<=n;i++)
			scanf("%d",&c[i]);		
		for(i=1;i<=sum+t;i++){
			dp1[i]=INF;
			dp2[i]=INF;
		} 
		dp1[0]=0;
		dp2[0]=0;
		//以下为未经优化的多重背包
	  /*for(i=1;i<=n;i++){
			if(c[i]>0){
				for(j=1;j<=c[i];j++){				
					for(k=sum+t;k>=v[i];k--)							
						if(dp1[k]>dp1[k-v[i]]+1)
							dp1[k]=dp1[k-v[i]]+1;
						
				}
			}*/

		//多重背包的二进制优化,将c[i](第i件物品的个数拆分成2^0 , 2^1 , 2^2 , 2^3 ,...),分别对拆分的个数*物品占用的背包体积进行01背包,
		//我们可以证明,背包体积数组中的每一项都可以选择所有的<=c[i]的件数,从中选择最优的(因为所有<c[i]的数都可以用2^0 , 2^1...部分数的和来表示)
		for(i = 1; i <= n; i++) { 
			int k = 1; 
			int s = 0; 
			while(s < c[i]) { 
				//对k*v[i]体积的物品进行01背包
				for(int j = sum+t; j >= v[i] * k; j--) { 
                    dp1[j] = min(dp1[j], dp1[j - v[i] * k] + k); 
                } 
                s += k; 
				if(s + k * 2 > c[i]) 
                    k = c[i] - s; 
				else
                    k *= 2; 
            } 
        }
		for(i = 1; i <= n; i++)
			 for(k=v[i];k<=sum;k++)
					if(dp2[k]>dp2[k-v[i]]+1)
					    dp2[k]=dp2[k-v[i]]+1;

				
		int min=INF;
		for(i=sum+t;i>=t;i--){
			if(dp1[i]+dp2[i-t]<min)
				min=dp1[i]+dp2[i-t];
		}

		if(min==INF) printf("-1\n");
		else printf("%d\n",min);
}
}

网上对二进制优化多重背包比较易懂的解释:

考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0--n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。 

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的质量和价值均是原来的质量和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]13,就将这种物品分成系数分别为1,2,4,6的四件物品。 分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-12^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。 这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*log n[i])01背包问题,是很大的改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值