快速排序被公认为是本世纪最重要的算法之一,这已经不是什么新闻了。对很多语言来说是实际系统排序,包括在Java中的Arrays.sort
。
那么快速排序有什么新进展呢?
好吧,就像我刚才提到的那样(Java 7发布两年后)快速排序实现的Arrays.sort
被双基准(dual-pivot)排序的一种变体取代了。这篇文章不仅展示了为什么这个变化如此优秀,而且让我们看到Jon Bentley和Joshua Bloch的谦逊。
我当时做了什么?
与所有人一样,我想实现这个算法并且对一千万个数值排序(随机数据和重复数据)。奇怪的是,我得到了下面的结果:
随机数据:
- 基本排序:1222ms。
- 三路(Three-way)快速排序:1295ms(我是认真的!)。
- 双基准快速排序:1066ms。
重复数据:
- 基本排序:378ms。
- 三路快速排序:15ms。
- 双基准快速排序:6ms。
愚蠢的问题1
我担心自己在实现三路快速排序的时候遗漏了什么。在多次执行随机输入一千万个数值后,可以看到单点排序始终运行更良好。尽管在执行一千万个数值的时候差距小于100ms。
我现在明白了,用三路快速排序作为默认排序工具的目的。因为在重复数值时,它的时间复杂度没有0(n2)。当我在输入重复值数据时,结果非常明显。但是真的为了处理重复数据的缘故,三路快速排序会受到性能损失吗?或者是我实现方式有问题?
愚蠢的问题2
我的双基准快速排序在实现重复数据的时候并没有处理好,它执行时耗费了0(n2)的时间复杂度。有什么好的办法可以避免吗?实现数组排序时我发现,在实际排序前升序序列和重复就已经能得到很好地消除。所以,作为一种应急的办法,如果定位的数字与比较的数字相等,则增长lowerIndex 去比较下一位数直到与pivot2不相等为止。这种实现会没有问题吗?
else if (pivot1==pivot2){
while (pivot1==pivot2 && lowIndex<highIndex){
lowIndex++;
pivot1=input[lowIndex];
}
}
这就是所有内容吗?我究竟做了哪些?
我一直觉得算法跟踪很有趣,但是双基准快速排序中出现的变量个数让我眼花缭乱。所以,接下来我在(三种)实现中都加入了调试信息,这样就可以看出实际运行中不同。
这些可跟踪的类只负责追踪数组下方的指针。希望你能发现这些类是很有用的。
例如一个双基准迭代器:
你可以从哪里下载代码?
整个项目(连同一些蹩脚的DSA实现)的实现可以在GitHub上找到。快速排序类就可以在这里找到。
这是我的实现单基准(Hoare),三路快排(Sedgewick)和新双基准(Yaroslavskiy)。
单基准:
package basics.sorting.quick;
import static basics.sorting.utils.SortUtils.exchange;
import static basics.sorting.utils.SortUtils.less;
import basics.shuffle.KnuthShuffle;
public class QuickSortBasic {
public void sort (int[] input){
//KnuthShuffle.shuffle(input);
sort (input, 0, input.length-1);
}
private void sort(int[] input, int lowIndex, int highIndex) {
if (highIndex<=lowIndex){
return;
}
int partIndex=partition (input, lowIndex, highIndex);
sort (input, lowIndex, partIndex-1);
sort (input, partIndex+1, highIndex);
}
private int partition(int[] input, int lowIndex, int highIndex) {
int i=lowIndex;
int pivotIndex=lowIndex;
int j=highIndex+1;
while (true){
while (less(input[++i], input[pivotIndex])){
if (i==highIndex) break;
}
while (less (input[pivotIndex], input[--j])){
if (j==lowIndex) break;
}
if (i>=j) break;
exchange(input, i, j);
}
exchange(input, pivotIndex, j);
return j;
}
}
三基准
package basics.sorting.quick;
import static basics.shuffle.KnuthShuffle.shuffle;
import static basics.sorting.utils.SortUtils.exchange;
import static basics.sorting.utils.SortUtils.less;
public class QuickSort3Way {
public void sort (int[] input){
//input=shuffle(input);
sort (input, 0, input.length-1);
}
public void sort(int[] input, int lowIndex, int highIndex) {
if (highIndex<=lowIndex) return;
int lt=lowIndex;
int gt=highIndex;
int i=lowIndex+1;
int pivotIndex=lowIndex;
int pivotValue=input[pivotIndex];
while (i<=gt){
if (less(input[i],pivotValue)){
exchange(input, i++, lt++);
}
else if (less (pivotValue, input[i])){
exchange(input, i, gt--);
}
else{
i++;
}
}
sort (input, lowIndex, lt-1);
sort (input, gt+1, highIndex);
}
}
双基准
package basics.sorting.quick;
import static basics.shuffle.KnuthShuffle.shuffle;
import static basics.sorting.utils.SortUtils.exchange;
import static basics.sorting.utils.SortUtils.less;
public class QuickSortDualPivot {
public void sort (int[] input){
//input=shuffle(input);
sort (input, 0, input.length-1);
}
private void sort(int[] input, int lowIndex, int highIndex) {
if (highIndex<=lowIndex) return;
int pivot1=input[lowIndex];
int pivot2=input[highIndex];
if (pivot1>pivot2){
exchange(input, lowIndex, highIndex);
pivot1=input[lowIndex];
pivot2=input[highIndex];
//sort(input, lowIndex, highIndex);
}
else if (pivot1==pivot2){
while (pivot1==pivot2 && lowIndex<highIndex){
lowIndex++;
pivot1=input[lowIndex];
}
}
int i=lowIndex+1;
int lt=lowIndex+1;
int gt=highIndex-1;
while (i<=gt){
if (less(input[i], pivot1)){
exchange(input, i++, lt++);
}
else if (less(pivot2, input[i])){
exchange(input, i, gt--);
}
else{
i++;
}
}
exchange(input, lowIndex, --lt);
exchange(input, highIndex, ++gt);
sort(input, lowIndex, lt-1);
sort (input, lt+1, gt-1);
sort(input, gt+1, highIndex);
}
}