参考博客: https://blog.csdn.net/Xiao_Bai_Ke/article/details/98998767.
https://blog.csdn.net/zh_ch_yu/article/details/88383196.
输入: 3通道的6
×
\times
× 6图像(3
×
\times
× 6
×
\times
× 6)
卷积核: 2个3
×
\times
× 3的卷积核(默认为2
×
\times
× 3
×
\times
× 3
×
\times
× 3)
卷积结果: 2个4
×
\times
× 4的图像
注:
- 卷积核默认第三维与输入图片的第三维(通道数)一样,并进行多层卷积,产生一个二维结果
- 1个卷积核产生一个二维结果,n个卷积核产生第三维为n的三维结果
- 卷积核n的个数就是输出的通道数
本文讲解了卷积神经网络的基本概念,包括输入图像尺寸、卷积核数量与尺寸,以及如何通过不同数量的卷积核生成相应通道数的输出图像。理解卷积核与输入图像的维度匹配和多层卷积过程对于掌握卷积神经网络的原理至关重要。

7247

被折叠的 条评论
为什么被折叠?



