连续与间断

连续

1.在某一点处连续: f ( x ) 在 x = a 的 邻 域 内 有 定 义 f(x)在x=a的邻域内有定义 f(x)x=a
如果 lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \to a}f(x)=f(a) limxaf(x)=f(a),可称 f ( x ) f(x) f(x) x = a x=a x=a处连续
注意: f ( x ) f(x) f(x) x = a x=a x=a处连续    ⟺    \iff f ( a − 0 ) = f ( a + 0 ) = f ( a ) f(a-0)=f(a+0)=f(a) f(a0)=f(a+0)=f(a)

2. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续    ⟺    \iff

f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内处处连续
f ( a ) = f ( a + 0 ) ; f ( b ) = f ( b − 0 ) f(a)=f(a+0);f(b)=f(b-0) f(a)=f(a+0)f(b)=f(b0)

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,记作 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b]

间断

如果 lim ⁡ x → a f ( x ) ≠ f ( a ) \lim_{x \to a}f(x)\neq f(a) limxaf(x)=f(a),称 x = a x=a x=a f ( x ) f(x) f(x)间断点
间断点分类:
①第一类间断点
f ( a − 0 ) 、 f ( a + 0 ) f(a-0)、f(a+0) f(a0)f(a+0)皆存在

f ( a − 0 ) = f ( a + 0 ) ≠ f ( a ) → f(a-0)=f(a+0)\neq f(a)\to f(a0)=f(a+0)=f(a)可去间断点
f ( a − 0 ) ≠ f ( a + 0 )   → f(a-0) \neq f(a+0) \quad \quad \quad\space\to f(a0)=f(a+0) 跳跃间断点

②第二类间断点
f ( a − 0 ) 、 f ( a + 0 ) f(a-0)、f(a+0) f(a0)f(a+0)至少一个不存在

注意:
Ⅰ. 基本初等函数(五类)

x a x^a xa
a x ( a > 0 且 a ≠ 1 ) a^x(a\gt0且a\neq1) ax(a>0a=1)
l o g a x ( a > 0 且 a ≠ 1 ) log_a^x(a\gt0且a\neq1) logax(a>0a=1)
三角函数
反三角函数

Ⅱ. 初等函数
由常数和基本初等函数经过四则和复合运算形成的

Ⅲ. 初等函数在定义域内连续

闭区间上连续的函数,必有最小值和最大值,一定有上下界
零点定理
闭区间上连续的函数,若两端点函数值异号,则开区间上必至少存在一点c,使得 f ( c ) = 0 f(c)=0 f(c)=0
设 f ( x ) ∈ [ a , b ] , 且 f ( a ) ∗ f ( b ) < 0 , 则 ∃ c ∈ 设f(x)\in[a,b],且f(a)*f(b)\lt0,则\exists c \in f(x)[a,b]f(a)f(b)<0c(a,b) 使 f ( c ) = 0 使f(c)=0 使f(c)=0
介值定理
闭区间上连续的函数,对于其最大值与最小值之间存在介值,对任取介值,在函数上存在至少一点,使得该点函数值与介值相等。
设 f ( x ) ∈ C [ a , b ]    ⟹    ∃ m , M 设f(x)\in C[a,b] \implies \exists m,M f(x)C[a,b]m,M
∀ η ∈ [ m , M ] , ∃ ζ ∈ \forall \eta \in [m,M],\exist \zeta \in η[m,M]ζ[a,b] 满 足 f ( ζ ) = η 满足f(\zeta)=\eta f(ζ)=η
注意:

f ( x ) ∈ C [ a , b ] , 且 ∃ c ∈ ( a , b ) , . . .    ⟹    零 点 定 理 f(x)\in C[a,b],且\exist c \in(a,b),...\quad \implies零点定理 f(x)C[a,b]c(a,b)...

f ( x ) ∈ C [ 0 , 1 ] , f ( 0 ) = 1 , f ( 1 ) = 0 , 证 明 : ∃ c ∈ ( 0 , 1 ) , 使 得 f ( c ) = 2 3 f(x) \in C[0,1],f(0)=1,f(1)=0,证明:\exist c \in(0,1),使得f(c)=\frac23 f(x)C[0,1]f(0)=1f(1)=0c(0,1)使f(c)=32
令 ϕ ( x ) = f ( s ) − 2 3 , ϕ ( 0 ) = 1 3 , ϕ ( 1 ) = − 2 3 , ∵ ϕ ( 0 ) ϕ ( 1 ) < 0 , ∴ ∃ c ∈ ( 0 , 1 ) , 使 得 ϕ ( c ) = 0    ⟹    f ( c ) = 2 3 令\phi(x) = f(s)-\frac23,\phi(0)=\frac13,\phi(1)=-\frac23,∵\phi(0)\phi(1)\lt0,∴\exist c \in (0,1),使得\phi(c)=0 \implies f(c)=\frac23 ϕ(x)=f(s)32ϕ(0)=31ϕ(1)=32ϕ(0)ϕ(1)<0c(0,1)使ϕ(c)=0f(c)=32

f ( x ) ∈ C [ a , b ] , 如 果 有 以 下 两 个 特 征 : 1. ζ ∈ [ a , b ] 或 2. 出 现 函 数 值 之 和      ⟹    介 值 定 理 f(x)\in C[a,b],如果有以下两个特征:1. \zeta \in [a,b] \quad或\quad2.出现函数值之和 \quad\space\implies 介值定理 f(x)C[a,b]1.ζ[a,b]2. 

f ( x ) ∈ C [ 0 , 2 ] , f ( 0 ) + 2 f ( 1 ) + 3 f ( 2 ) = 6 , 证 明 ∃ c ∈ [ 0 , 2 ] , 使 得 f ( c ) = 1 f(x)\in C[0,2],f(0)+2f(1)+3f(2)=6,证明\exist c \in [0,2],使得f(c)=1 f(x)C[0,2]f(0)+2f(1)+3f(2)=6c[0,2]使f(c)=1
f ( x ) ∈ C [ 0 , 2 ]    ⟹    ∃ m , M f(x) \in C[0,2] \implies \exist m,M f(x)C[0,2]mM
6 m ≤ f ( 0 ) + 2 f ( 1 ) + 3 f ( 2 ) ≤ 6 M 6m \le f(0)+2f(1)+3f(2) \le 6M 6mf(0)+2f(1)+3f(2)6M
   ⟹    m ≤ 1 ≤ M \implies m \le 1 \le M m1M
∴ ∃ c ∈ [ 0 , 2 ] , 使 得 f ( c ) = 1 ∴\exist c \in[0,2],使得f(c)=1 c[0,2]使f(c)=1

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页

打赏作者

limit___lxz

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值