连续
1.在某一点处连续:
f
(
x
)
在
x
=
a
的
邻
域
内
有
定
义
f(x)在x=a的邻域内有定义
f(x)在x=a的邻域内有定义
如果
lim
x
→
a
f
(
x
)
=
f
(
a
)
\lim_{x \to a}f(x)=f(a)
limx→af(x)=f(a),可称
f
(
x
)
f(x)
f(x)在
x
=
a
x=a
x=a处连续
注意:
f
(
x
)
f(x)
f(x)在
x
=
a
x=a
x=a处连续
⟺
\iff
⟺
f
(
a
−
0
)
=
f
(
a
+
0
)
=
f
(
a
)
f(a-0)=f(a+0)=f(a)
f(a−0)=f(a+0)=f(a)
2. f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续 ⟺ \iff ⟺
f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内处处连续
f ( a ) = f ( a + 0 ) ; f ( b ) = f ( b − 0 ) f(a)=f(a+0);f(b)=f(b-0) f(a)=f(a+0);f(b)=f(b−0)
称 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续,记作 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)∈C[a,b]
间断
如果
lim
x
→
a
f
(
x
)
≠
f
(
a
)
\lim_{x \to a}f(x)\neq f(a)
limx→af(x)=f(a),称
x
=
a
x=a
x=a为
f
(
x
)
f(x)
f(x)间断点
间断点分类:
①第一类间断点
f
(
a
−
0
)
、
f
(
a
+
0
)
f(a-0)、f(a+0)
f(a−0)、f(a+0)皆存在
f ( a − 0 ) = f ( a + 0 ) ≠ f ( a ) → f(a-0)=f(a+0)\neq f(a)\to f(a−0)=f(a+0)=f(a)→可去间断点
f ( a − 0 ) ≠ f ( a + 0 ) → f(a-0) \neq f(a+0) \quad \quad \quad\space\to f(a−0)=f(a+0) →跳跃间断点
②第二类间断点
f
(
a
−
0
)
、
f
(
a
+
0
)
f(a-0)、f(a+0)
f(a−0)、f(a+0)至少一个不存在
注意:
Ⅰ. 基本初等函数(五类)
x a x^a xa
a x ( a > 0 且 a ≠ 1 ) a^x(a\gt0且a\neq1) ax(a>0且a=1)
l o g a x ( a > 0 且 a ≠ 1 ) log_a^x(a\gt0且a\neq1) logax(a>0且a=1)
三角函数
反三角函数
Ⅱ. 初等函数
由常数和基本初等函数经过四则和复合运算形成的
Ⅲ. 初等函数在定义域内连续
闭区间上连续的函数,必有最小值和最大值,一定有上下界
零点定理
闭区间上连续的函数,若两端点函数值异号,则开区间上必至少存在一点c,使得
f
(
c
)
=
0
f(c)=0
f(c)=0
设
f
(
x
)
∈
[
a
,
b
]
,
且
f
(
a
)
∗
f
(
b
)
<
0
,
则
∃
c
∈
设f(x)\in[a,b],且f(a)*f(b)\lt0,则\exists c \in
设f(x)∈[a,b],且f(a)∗f(b)<0,则∃c∈(a,b),
使
f
(
c
)
=
0
使f(c)=0
使f(c)=0
介值定理
闭区间上连续的函数,对于其最大值与最小值之间存在介值,对任取介值,在函数上存在至少一点,使得该点函数值与介值相等。
设
f
(
x
)
∈
C
[
a
,
b
]
⟹
∃
m
,
M
设f(x)\in C[a,b] \implies \exists m,M
设f(x)∈C[a,b]⟹∃m,M
∀
η
∈
[
m
,
M
]
,
∃
ζ
∈
\forall \eta \in [m,M],\exist \zeta \in
∀η∈[m,M],∃ζ∈[a,b],
满
足
f
(
ζ
)
=
η
满足f(\zeta)=\eta
满足f(ζ)=η
注意:
若 f ( x ) ∈ C [ a , b ] , 且 ∃ c ∈ ( a , b ) , . . . ⟹ 零 点 定 理 f(x)\in C[a,b],且\exist c \in(a,b),...\quad \implies零点定理 f(x)∈C[a,b],且∃c∈(a,b),...⟹零点定理
f
(
x
)
∈
C
[
0
,
1
]
,
f
(
0
)
=
1
,
f
(
1
)
=
0
,
证
明
:
∃
c
∈
(
0
,
1
)
,
使
得
f
(
c
)
=
2
3
f(x) \in C[0,1],f(0)=1,f(1)=0,证明:\exist c \in(0,1),使得f(c)=\frac23
f(x)∈C[0,1],f(0)=1,f(1)=0,证明:∃c∈(0,1),使得f(c)=32
证:
令
ϕ
(
x
)
=
f
(
s
)
−
2
3
,
ϕ
(
0
)
=
1
3
,
ϕ
(
1
)
=
−
2
3
,
∵
ϕ
(
0
)
ϕ
(
1
)
<
0
,
∴
∃
c
∈
(
0
,
1
)
,
使
得
ϕ
(
c
)
=
0
⟹
f
(
c
)
=
2
3
令\phi(x) = f(s)-\frac23,\phi(0)=\frac13,\phi(1)=-\frac23,∵\phi(0)\phi(1)\lt0,∴\exist c \in (0,1),使得\phi(c)=0 \implies f(c)=\frac23
令ϕ(x)=f(s)−32,ϕ(0)=31,ϕ(1)=−32,∵ϕ(0)ϕ(1)<0,∴∃c∈(0,1),使得ϕ(c)=0⟹f(c)=32
若 f ( x ) ∈ C [ a , b ] , 如 果 有 以 下 两 个 特 征 : 1. ζ ∈ [ a , b ] 或 2. 出 现 函 数 值 之 和 ⟹ 介 值 定 理 f(x)\in C[a,b],如果有以下两个特征:1. \zeta \in [a,b] \quad或\quad2.出现函数值之和 \quad\space\implies 介值定理 f(x)∈C[a,b],如果有以下两个特征:1.ζ∈[a,b]或2.出现函数值之和 ⟹介值定理
f
(
x
)
∈
C
[
0
,
2
]
,
f
(
0
)
+
2
f
(
1
)
+
3
f
(
2
)
=
6
,
证
明
∃
c
∈
[
0
,
2
]
,
使
得
f
(
c
)
=
1
f(x)\in C[0,2],f(0)+2f(1)+3f(2)=6,证明\exist c \in [0,2],使得f(c)=1
f(x)∈C[0,2],f(0)+2f(1)+3f(2)=6,证明∃c∈[0,2],使得f(c)=1
证:
f
(
x
)
∈
C
[
0
,
2
]
⟹
∃
m
,
M
f(x) \in C[0,2] \implies \exist m,M
f(x)∈C[0,2]⟹∃m,M
6
m
≤
f
(
0
)
+
2
f
(
1
)
+
3
f
(
2
)
≤
6
M
6m \le f(0)+2f(1)+3f(2) \le 6M
6m≤f(0)+2f(1)+3f(2)≤6M
⟹
m
≤
1
≤
M
\implies m \le 1 \le M
⟹m≤1≤M
∴
∃
c
∈
[
0
,
2
]
,
使
得
f
(
c
)
=
1
∴\exist c \in[0,2],使得f(c)=1
∴∃c∈[0,2],使得f(c)=1