林立民爱洗澡
码龄7年
关注
提问 私信
  • 博客:289,434
    289,434
    总访问量
  • 6
    原创
  • 1,351,100
    排名
  • 276
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-08-04
博客简介:

林立民爱洗澡

博客描述:
----学习记录
查看详细资料
个人成就
  • 获得825次点赞
  • 内容获得147次评论
  • 获得2,388次收藏
创作历程
  • 7篇
    2018年
成就勋章
TA的专栏
  • 数据挖掘算法
    5篇
  • 数理统计基础
    3篇
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

C4.5决策树分类+MATLAB详细代码+解释文档+uci wine数据集

发布资源 2019.01.14 ·
rar

机器学习的一些总结

   以下是自己在机器学习课程中的一些知识点总结,主要渗透了自己对某些知识点的理解,涵盖的面较广,将会不定期地更新。若有理解不一致之处,望指明并相互探讨。1 SVM中常用的核函数有哪些?如何选择相应的核函数?   常用的核函数有线性核,多项式核以及高斯核。1.1 线性核κ(x,z)=&amp
原创
发布博客 2018.10.05 ·
1150 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

动态时间规整算法(Dynamic Time Warping, DTW)之初探单词语音识别

  动态时间规整算法(DTW)是最近接触的一种提取时间序列模板方法。本文主要是一些自己的学习记录,并适当地加入自己的理解。若有见解不一致之处,欢迎交流。1 动态时间规整(DTW)基本思想  先从单词语音时间序列的规整问题引入DTW的基本思想。   假设下图两个时间序列对应的是同一个单词的发音(实则不是,只是为了便于理解)。黑色的线表示两个时间序列的相似的点(用幅度差异刻画时间序列点的相似...
原创
发布博客 2018.07.27 ·
14249 阅读 ·
15 点赞 ·
1 评论 ·
62 收藏

关于支持向量机(SVM)的高斯核和惩罚因子C的理解(简单易懂)

  跟小伙伴探讨了线性支持向量机(Support Vector Machine, SVM),不自觉地就将话题拉向了高斯核函数和惩罚因子C。本文用简单易懂的形式呈现了自己对于高斯核函数和惩罚因子C的理解。为什么说高斯核对应的映射函数将原始特征空间映射成了无限维空间?高斯核函数的参数σσ\sigma 如何选择?惩罚因子C的加入有何意义?C的取值大小对于SVM的模型有何影响?后文将围绕这几个问题进行探讨...
原创
发布博客 2018.07.20 ·
35846 阅读 ·
55 点赞 ·
11 评论 ·
238 收藏

常见的凸优化方法

本文转载自多个地方,仅用作个人学习,如需删除请见谅并联系本人。为什么凸优化这么重要?见知乎,写的很好https://www.zhihu.com/question/24641575http://blog.csdn.net/zkq_1986/article/details/52317...
转载
发布博客 2018.07.18 ·
6419 阅读 ·
2 点赞 ·
0 评论 ·
26 收藏

详解EM算法与混合高斯模型(Gaussian mixture model, GMM)

  最近在看晓川老(shi)师(shu)的博士论文,接触了混合高斯模型(Gaussian mixture model, GMM)和EM(Expectation Maximization)算法,不禁被论文中庞大的数学公式所吓退。本文通过查阅相关资料,在复杂巧妙的推理公式中融入了自己的理解,详细梳理了混合高斯模型和EM算法。1 单高斯模型(Gaussian single model, GSM)...
原创
发布博客 2018.07.14 ·
151766 阅读 ·
685 点赞 ·
107 评论 ·
1861 收藏

二维高斯分布(Two-dimensional Gaussian distribution)的参数分析

最近在看高斯混合模型(Gaussian Mixture Model, GMM),涉及到高斯分布的参数。为此特意回顾了概率论的二维高斯分布的相关概念,并分析了参数对二维高斯分布曲面的影响。1 多维高斯分布的概率密度函数 多维变量X=(x1,x2,...xn)X=(x1,x2,...xn)X = ({x_1},{x_2},...{x_n})的联合概率密度函数为: f(X)=1(2π)...
原创
发布博客 2018.07.12 ·
62503 阅读 ·
47 点赞 ·
5 评论 ·
222 收藏

C4.5 决策树算法对UCI wine数据集分类的实现(MATLAB)

 1、功能实现与样本分析在数据挖掘领域,可以利用相应的算法对数据集进行训练,即对样本的特征进行分析,从而归纳出相同类别的样本之间存在的内在特征联系,进一步对未知类别的样本进行预测,判断出该样本所属的类别。本文实现了利用决策树算法对UCI 机器学习库上的经典wine数据集进行分类的目的。为达到相应的分类目的,需要先对数据集样本进行分析。表1 wine数据集样本特征不用化学成分的含量与酒的所属类别息息...
原创
发布博客 2018.07.11 ·
17108 阅读 ·
19 点赞 ·
23 评论 ·
149 收藏