判断一个数是否为质数/素数——从普通判断算法到高效判断算法思路

定义:约数只有1和本身的整数称为质数,或称素数。
计算机或者相关专业,基本上大一新生开始学编程都会接触的一个问题就是判断质数,下面分享几个判断方法,从普通到高效。

1)直观判断法

最直观的方法,根据定义,因为质数除了1和本身之外没有其他约数,所以判断n是否为质数,根据定义直接判断从2到n-1是否存在n的约数即可。C++代码如下:

    bool isPrime_1( int num )  
    {  
        int tmp =num- 1;  
        for(int i= 2;i <=tmp; i++)  
          if(num %i== 0)  
             return 0 ;  
        return 1 ;  
    }  

2)直观判断法改进
上述判断方法,明显存在效率极低的问题。对于每个数n,其实并不需要从2判断到n-1,我们知道,一个数若可以进行因数分解,那么分解时得到的两个数一定是一个小于等于sqrt(n),一个大于等于sqrt(n),据此,上述代码中并不需要遍历到n-1,遍历到sqrt(n)即可,因为若sqrt(n)左侧找不到约数,那么右侧也一定找不到约数。C++代码如下:

    bool isPrime_2( int num )  
    {  
         int tmp =sqrt( num);  
         for(int i= 2;i <=tmp; i++)  
            if(num %i== 0)  
              return 0 ;  
         return 1 ;  
    }  

3)另一种方法

方法(2)应该是最常见的判断算法了,时间复杂度O(sqrt(n)),速度上比方法(1)的O(n)快得多。最近在网上偶然看到另一种更高效的方法,暂且称为方法(3)吧,由于找不到原始的出处,这里就不贴出链接了,如果有原创者看到,烦请联系我,必定补上版权引用。下面讲一下这种更快速的判断方法;
首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;
证明:令x≥1,将大于等于5的自然数表示如下:
······ 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ······
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。这里有个题外话,关于孪生素数,有兴趣的道友可以再另行了解一下,由于与我们主题无关,暂且跳过。这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数。
根据以上规律,判断质数可以6个为单元快进,即将方法(2)循环中i++步长加大为6,加快判断速度,代码如下:

        bool isPrime_3( int num )  
    {  
                     //两个较小数另外处理  
                     if(num ==2|| num==3 )  
                                     return 1 ;  
                     //不在6的倍数两侧的一定不是质数  
                     if(num %6!= 1&&num %6!= 5)  
                                     return 0 ;  
                     int tmp =sqrt( num);  
                     //在6的倍数两侧的也可能不是质数  
                     for(int i= 5;i <=tmp; i+=6 )  
                                     if(num %i== 0||num %(i+ 2)==0 )  
                                                     return 0 ;  
                     //排除所有,剩余的是质数  
                     return 1 ;  
    }  

算法性能测试:
编写测试代码,使用较多数据测试比较几种方法的判断效率,数据量40w,代码如下:

    #include <iostream>  
    #include <string>  
    #include <ctime>  
    #include <vector>  
    using namespace std;  
    bool isPrime_1( int num );  
    bool isPrime_2( int num );  
    bool isPrime_3( int num );  
    int main()  
    {  
                     int test_num =400000;  
                     int tstart ,tstop; //分别记录起始和结束时间  
                     //测试第一个判断质数函数  
                     tstart=clock ();  
                     for(int i= 1;i <=test_num; i++)  
                                     isPrime_1(i );  
                     tstop=clock ();  
                     cout<<"方法(1)时间(ms):" <<tstop- tstart<<endl ;//ms为单位  
                     //测试第二个判断质数函数  
                     tstart=clock ();  
                     for(int i= 1;i <=test_num; i++)  
                                     isPrime_2(i );  
                     tstop=clock ();  
                     cout<<"方法(2)时间(ms):" <<tstop- tstart<<endl ;  
                     //测试第三个判断质数函数  
                     tstart=clock ();  
                     for(int i= 1;i <=test_num; i++)  
                                     isPrime_3(i );  
                     tstop=clock ();  
                     cout<<"方法(3)时间(ms):" <<tstop- tstart<<endl ;  
                     cout<<endl ;  
                     system("pause" );  
                     return 0 ;  
    }  

运行结果如下;
这里写图片描述

可以看出,判断到40w,效率上方法(1)明显要差得多,方法(2)和方法(3)在这种测试数量下时间相差2倍多

单独对比方法(2)和(3),数据量加到1000w,结果如下:
这里写图片描述
可以看出,方法(2)和方法(3)在这种测试数量下时间相差依然是2倍多,不过已经是很不错的提升。
对了,附上运行环境,CPU-i5-3210,内存4G,win7,vs2012。

好了,判断质数的方法暂时就到这里,不足之处欢迎各道友指出。、
转载自http://blog.csdn.net/huang_miao_xin/article/details/51331710
向大佬比心~~~

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值