关系代数是一种抽象的查询语言,它用于对关系的运算来表达查询。运算的三大要素为:运输对象,运算符,运算结果。关系代数的运算对象是关系,运算结果亦是关系。
关系代数用到的运输方便包括两类:传统的集合运算和专门的关系运算。
关系代数运算符:

1.传统的集合运算
传统的集合运算是二目运算,包括并,交,差,笛卡尔积四种运算。
设关系R和关系S具有相同的目n(即两个关系都有n个属性),且相应的属性取自同一个域,t是元组变量,t∈R表示t是R的一个元组。
可以定义并,交,差,笛卡尔积运算如下:
(1) 并
关系R与关系S的并记作:
R∪S={t|t∈R∨t∈S}
其结果仍为n目关系,由属于R或属于S的元组组成。
(2) 交
关系R与关系S的交记作:
R∩S={t|t∈R∧t∈S}
其结果关系仍为n目关系,由既属于R又属于S的元组组成。
关系的交可以用差来表示,即R∩S={R-(R-S)}
(3) 差
关系R与关系S的差记作:
R-S={t|t∈R∧t∉S}
其结果仍为n目关系,由属于R而不属于S 的所以元组组成。
(4) 笛卡尔积
两个分别为n目和m目的关系R和S的迪科尔基是一个n+m列的元组集合。元组的钱n列是关系R的一个元组,后m列是关系S的一个元组。若R有k₁个元组,S有k₂个元组,则关系R和关系S的笛卡尔积有k₁×k₂个元组,记作:
R×S={t₁t₂|t₁∈R∧t₂∈S}
2.传统的关系运算
专门的关系运算包括选择,投影,连接,除运算等。
(1) 选择
选择又称为限制。它是在关系R中选择面积按住给定条件的诸元组,记作:
σF(R)={t|t∈RF (r)=‘真’}
其中F表示选择条件,他是一个逻辑表达式,取逻辑值“真”或“假”。
逻辑表达式F的基本形式为:
X₁θY₁
其中θ表示比较运算符,它可以是>,≥,<,≤,=或<>。
X₁,Y₁等是属性名,或为常量,或为简单函数;属性名也可以用它的序号来代替。
(2)投影
关系R上的投影是从R中选择出若干属性列组成新的关系,记作:
πA(R)={t|[A]t∈R}
其中A为R中的属性列。投影操作是从列的角度进行的运算。
(3)连接
连接也称为θ连接。他是从两个关系的笛卡尔积中选取属性间满足一定条件的元组。记作:

其中,A和B分别为R和S上列数相等且可比的属性组,A是比较运算符。连接运算从R和S的笛卡尔积R×S中选取R关系在A属性组上的值与S关系在B属性上的值满足比较关系θ的元组。θ为“=”的连接运算称为等值连接。它是从关系R与S的广义笛卡尔积中选取A,B属性值相等的那些元组,即等值连接为:

自然连接是一种特殊的等值连接。它要求两个关系中进行比较的分量必须是同名的属性组,并且在结果中把重复的属性列去掉。即若R和S中具有相同的属性组B,U为R和S的全体属性集合,则自然连接可记作:

(4)除运算
给定关系R(X,Y)和S(Y,Z),其中X,Y,Z为属性组。R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。
R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列水囊的投影:元组在X上分量值x的象集Yx包括S在Y上的投影的集合。记作:
R÷S={tr[X]|tr∈R∧πY(S)∈=Yx}
其中Yx为x在R中的象集。
五种基本的关系代数运算:选择,投影,并,差,笛卡尔积。

1万+

被折叠的 条评论
为什么被折叠?



