文章目录
Basics of topology in 3D modeling - 3D 建模中的拓扑基础知识
我知道我们都想创造很酷的机器人。但在制作机器人之前,让我们先谈谈基本的拓扑原理。
我还要感谢所有加入一起讨论的人。你的问题真的帮助塑造了这篇文章。
好了,进入主题。如何理解 3D 建模中的拓扑?
当我们谈论 3D 拓扑时,我们指的是整个模型中的边缘分布。举个例子,你有没有问过自己以下任何问题?
- 我怎么知道我的边缘有适当的 edge flow(边流,译着很别扭)?
- 我怎么知道我的网格中是否有均匀的 edge distribution (边缘分布)?
- 我怎么知道我的网格是否 clean (整洁)?
- 我怎么知道有没有 pinching (捏,就是部分网格排布过紧密)?
为什么我的细分网格看起来如此变形?
所有这些问题都基于拓扑结构,例如在任何给定模型上边是如何组织的。
但是是否有足够容易理解的规则或工作流程,以便我们每次处理新项目时都可以应用它?
好吧,是的……不。有一些非常容易记住的规则,但是学习将这些规则正确地应用于不同的网格,需要大量的练习。
Where to begin? - 从哪里开始?
那么 3D 建模中的正确拓扑是什么?
让我首先向您展示一些拓扑出现问题的示例,然后看看我们是否可以找到解决问题的简单方法。
在这个例子中,我们可以看到网格上有一些变形。我们已经知道,两条边越接近的区域越锐利。
那么为什么会这样呢?
我们可以清楚地看到黄色突出区域中的角正在形成一个更锐利的角对吗?
虽然两个接近的边缘确实会产生更锐利的角,但如果这些相同的边缘在一端超级接近,而在另一端广泛分布,则可能会出现一些变形。
就像我们在上面的示例中看到的那样,左侧的宽边缘扩展区域逐渐流入右侧的窄边缘扩展区域(黄色框中)。网格的这两个区域之间的过渡,我们有一个没有边缘的大空白区域会导致变形。那里根本没有足够的几何形状来支持这种结构。
为了避免这个问题,我们需要更多的边缘来释放一些紧张。
那么解决这个问题最简单的方法是什么?
答案是,创建更多的均匀边缘分布(或边缘分布)。在添加新边缘时,我们需要确保边缘分布均匀且看起来像正方形。也称为四边形。
好多了!好的,所以现在我们知道我们需要均匀分布的边缘以避免失真。但仅靠调整分布是不够的。如果散布数量(或多边形数量)太低,那么在部分几何体细节比较多的部分时,同样会遇到此类问题。那么我们需要什么来避免这种类型的失真呢?
我们需要 不太密集 或 不太广泛 的 均匀边缘分布。
在低多边形和高多边形(边)计数中操作边缘都有 优缺点。让我们看看它们是什么。
Low poly count - 低多边形(低模)
优点:低多边形的边数将使我们能够轻松地修改形状。
缺点:我们无法建立具有低多边形数的细节。我们想要的细节越多,我们需要的几何图形就越多。
High poly count - 高多边形(高模)
优点:使用更大的多边形数,我们可以轻松添加更多细节,并自带密集网格。
缺点:另一方面,较大的多边形网格更难控制,因为要操作的点和边更多。
Rules to follow so far - 到目前为止要遵循的规则
那么,如果我们总结这些信息,我们将应用到我们的工作流程中的结论或规则是什么?
1. 我们需要从非常低的多边形开始。
为什么?因为网格更容易控制并帮助我们更快地建立我们的形状。
2. 我们需要确保边缘分布均匀。
为什么?因为我们想确保我们有足够的几何形状来处理我们的 几何体细节 和 锐利的角。正如我们在第一个示例中看到的那样,不均匀的边缘扩展会导致不预期的结果。
很好!两个简单的规则开始。不那么难记住吧?但仅此而已吗?
不……我们还有两个。如果我们现在检查我们的进展,我们的下一步是什么?我们的最后一个示例表明,由于 边缘均匀分布,几何形状 没有变形,但现在角 不再锐利。
为了正确地做到这一点,我们需要熟悉 Supportive Edges (支撑边缘) 和 Edge Flow (边流)。 接下来让我们这样做。
Supportive Edges - 支撑边缘
什么是 Supportive Edges (支撑边缘)?
支撑边缘只会确保您的对象在应用细分后保持细节。
我们希望收紧的任何边缘/形状都需要至少一到两个(推荐)支撑边缘。通常,这就是我们模型的 轮廓。靠近的两条边会形成一个锐利尖角。我们只需要遵循这个规则。
所以在我们的例子中,我们应该把我们的 支撑边缘 放在哪里?我们之前提到了 轮廓,对吧?
如果是这种情况,我们可以将轮廓边缘(黄色框中)挤出到外部,或者复制内部的边缘。这就是我们设置 支撑边缘 的方式。
挤出形状后,轮廓 边缘理想情况下应由 2 个 支撑边缘 包围。
现在我们可以看看应用细分后,我们的网格会是什么样子。它看起来不错,一旦我们弯曲它,表面似乎没有变形。到目前为止已经足够好了。
让我们将 支撑边缘 添加到规则列表中。
到目前为止要遵循的规则
1. 我们需要从非常低的多边形开始。
为什么?因为网格更容易控制并帮助我们更快地建立我们的形状。
2. 我们需要确保边缘分布均匀。
为什么?因为我们想确保我们有足够的几何形状来处理我们的 几何体细节 和 锐利的角。正如我们在第一个示例中看到的那样,不均匀的边缘扩展会导致不预期的结果。
3. 我们需要添加 支撑边缘。
为什么?因为一旦我们应用细分,支撑边缘将确保我们的主要形状(或轮廓)保持其结构。
Edge Flow - 边流
什么是 edge flow (边缘流),什么是 edge redirection (边缘重定向)?
在许多情况下,我们的前三个步骤并不总能得到我们想要的结果。有些角落可能不像我们想要的那样锋利或柔软。
在我们的例子中,所有的角落仍然非常柔软,而不是锋利。
现在我们需要一种方法来操作我们已经拥有的拓扑以获得我们想要的结果,对吧?但不仅如此,我们还需要在保持四边形的同时保持拓扑整洁。
如果这个部分听起来有点混乱,那就多练习。你经历的例子越多,它就会变得越清楚。
让我们先谈谈重定向。我们可以从我们的 支撑边缘 开始,因为它们提供了足够的几何形状来形成一个尖角。
如果我们回到最基本的,我们会有两个例子。一个示例将有一个软角,而另一个示例将有更多的尖角。注意到区别了吗?
因此,基于上面的示例,让我们继续并尽可能使用 支持边缘 应用尖角。
现在我们正在慢慢接近我们的最终形状,你可以注意到只有两个角需要锐化。
这是我们要做的。我们需要以某种方式重新排列我们的边缘,使它们具有“gravity flow (重力流)”。说什么??
是的,它帮助我更好地理解了这个边缘的东西,所以希望它也能帮助其他人。
在下面的示例中,我们可以在左侧看到当前的边缘流。但现在让我们检查中间的例子。
我们有一个灰色的轮廓,代表我们的支持优势。现在让我们假设那里有重力,根据我们行走的角度,这将是边缘的流动(黄色线)-- 边流。我们只需要应用这个逻辑来重新排列边缘,这让它们有利于形状。
在右边的例子中,我现在移除了我们不需要的边缘,所以我们有更多的空间来跟随我们形状的“gravity (重力)”。
好的,我们的原始网格位于左侧。然后,如中间所示,我们将删除我们不需要的边缘并组织那些与“重力”流不匹配的流。然后,如右侧示例所示,我们会将边缘带回中间区域,以使所有边缘或多或少地再次均匀分布。
大家伙,这就是我们想要的结果!关于如何解决这个问题还有很多其他的方法,但我试图让它简单明了。
既然我们已经完成了,让我们再次打破规则。
Rules to follow on topology in 3D modeling - 在 3D 建模中遵循拓扑规则
1. 我们需要从非常低的多边形开始。
为什么?因为网格更容易控制并帮助我们更快地建立我们的形状。
2. 我们需要确保边缘分布均匀。
为什么?因为我们想确保我们有足够的几何形状来处理我们的 几何体细节 和 锐利的角。正如我们在第一个示例中看到的那样,不均匀的边缘扩展会导致不预期的结果。
3. 我们需要添加 支撑边缘。
为什么?因为一旦我们应用细分,支撑边缘将确保我们的主要形状(或轮廓)保持其结构。
4. 我们需要检查我们的边流是否正确。
为什么?因为不同的 边流 在细分上会给出不同的结果。这部分需要练习。
注意:虽然这些规则很简单,但某些因素可能会有所不同。例如,在您管理 边流 之后,可以稍后添加 支持边缘。但是首先了解规则是一个很好的做法,然后应用这些规则,将很容易的匹配您的工作流中。