母函数/生成函数

前言


%   本文致力在追求严谨的前提下尽量通俗易懂。
  若无法理解部分公式,可尝试将其中的sigma化简为带省略号的形式。本文的例题中含有思维过程,但绝大部分习题中不含思维过程,仅供参考。
  特殊 规定 0 0 = 1 0^0=1 00=1,这样可以避免很多麻烦。

概念


%   级数 级数是指将数列的项依次用加号连接起来的函数
  
  收敛发散 若 n → ∞ n→\infty n 时, f ( n ) → 0 f(n)→0 f(n)0 ,我们称级数是收敛的,否则为发散的,即 lim ⁡ n → ∞ f ( n ) = 0 \lim_{n→\infty}f(n)=0 limnf(n)=0.
  
  幂级数 形如 ∑ a n ( x − x 0 ) n \sum a_n(x-x_0)^n an(xx0)n 的级数,称之为幂级数。其中 x 0 x_0 x0 为常数, a i a_i ai 为系数。
  
  形式幂级数 在形式幂级数中, x x x 从来不指定一个数值,且对收敛和发散的问题不感兴趣,感兴趣的是系数序列,即 a i a_i ai,因而在实际变形运算中,既可以认为其是收敛的,也可以认为其是发散的。
  
  生成函数 生成函数分成两种,分别为普通型生成函数和指数型生成函数。
  
  普通型生成函数 对于任意数列 a 0 , a 1 , a 2 ⋯ a n a_0,a_1,a_2\cdots a_n a0,a1,a2an 用如下方法与一个函数联系起来: G ( x ) = ∑ i = 0 n a i x i G(x)=\sum_{i=0}^{n}a_ix^i G(x)=i=0naixi  则称 G ( x ) G(x) G(x) 是数列 a 0 , a 1 , a 2 ⋯ a n a_0,a_1,a_2\cdots a_n a0,a1,a2an普通生成函数(Ordinary generating function),缩写为 OGF \text{OGF} OGF
  
  指数型生成函数 对于任意数列 a 0 , a 1 , a 2 ⋯ a n a_0,a_1,a_2\cdots a_n a0,a1,a2an 用如下方法与一个函数联系起来:
G ( x ) = ∑ i = 0 n a i i ! x i G(x)=\sum_{i=0}^{n}\frac{a_i}{i!}x^i G(x)=i=0ni!aixi  则称 G ( x ) G(x) G(x) 是数列 a 0 , a 1 , a 2 ⋯ a n a_0,a_1,a_2\cdots a_n a0,a1,a2an指数型生成函数(Exponential generating function),缩写为 EGF \text{EGF} EGF

OGF \text{OGF} OGF 变形


%   事实上,对于 OGF \text{OGF} OGF 变形问题,只需要会证明一条公式即可掌握大部分。
1 ( 1 − a x ) m = lim ⁡ N → ∞ ∑ n = 0 N C n + m − 1 m − 1 a n x n \begin{aligned}\frac{1}{(1-ax)^m}=\lim_{N→\infty}\sum_{n=0}^{N}C_{n+m-1}^{m-1}a^nx^n\end{aligned} (1ax)m1=Nlimn=0NCn+m1m1anxn 根据等比数列的求和公式,有: lim ⁡ n → ∞ ∑ i = 0 n a i x i = lim ⁡ n → ∞ 1 − a n + 1 x n + 1 1 − a x \lim_{n→\infty}\sum_{i=0}^{n}a^ix^i=\lim_{n→\infty}\frac{1-a^{n+1}x^{n+1}}{1-ax} nlimi=0naixi=nlim1ax1an+1xn+1  当级数收敛时,有 lim ⁡ n → ∞ x n + 1 = 0 \lim_{n→\infty}x^{n+1}=0 limnxn+1=0,因而有: lim ⁡ n → ∞ ∑ i = 0 n a i x i = 1 1 − a x \lim_{n→\infty}\sum_{i=0}^{n}a^ix^i=\frac{1}{1-ax} nlimi=0naixi=1ax1  进一步得到: 1 ( 1 − a x ) m = ( 1 1 − a x ) m = ( lim ⁡ n → ∞ ∑ i = 0 n a i x i ) m \frac{1}{(1-ax)^m}=\left(\frac{1}{1-ax}\right)^m=\left(\lim_{n→\infty}\sum_{i=0}^{n}a^ix^i\right)^m (1ax)m1=(1ax1)m=(nlimi=0naixi)m  考虑第 k k k 个括号中,选取 t k t_k tk 次项,也就是选取 a t k x t k a_{t_k}x^{t_k} atkxtk,则选出来的所有 k k k 项对 n = ∑ t k n=\sum t_k n=tk 次项有 a n a^{n} an 的贡献。
  由隔板问题可以得知,取 m m m 个数,使得它们的和为 n n n 的方案数相当于将 n n n 个物品划分为 m m m 份,等于在 n + m − 1 n+m-1 n+m1 个物品中插入 m − 1 m-1 m1 个隔板( t i t_i ti 可以为0,因而需要强制每组选一个,并给总数增加隔板个),因而满足 n = ∑ t k n=\sum t_k n=tk t t t 序列的可能方案共有 C n + m − 1 m − 1 C_{n+m-1}^{m-1} Cn+m1m1 种。故 n n n 次项前的系数为 C n + m − 1 m − 1 a n C_{n+m-1}^{m-1}a^n Cn+m1m1an。得证。
  
  有了这条公式,我们可以便捷地得到许多结论,但注意反过来也成立,例如当 m = 1 m=1 m=1 时,有: 1 1 − a x = ∑ i = 0 ∞ a i x i \frac{1}{1-ax}=\sum_{i=0}^{\infty}a^ix^i 1ax1=i=0aixi  当 m = 2 m=2 m=2 时,有: 1 ( 1 − a x ) 2 = ∑ i = 0 ∞ C i + 1 1 a i x i = ∑ i = 0 ∞ ( i + 1 ) a i x i \frac{1}{(1-ax)^2}=\sum_{i=0}^{\infty}C_{i+1}^{1}a^ix^i=\sum_{i=0}^{\infty}(i+1)a^ix^i (1ax)21=i=0Ci+11aixi=i=0(i+1)aixi  以另一种方式展开可以得到:   1 ( 1 − a x ) 2 = ( 1 1 − a x ) 2 = ( ∑ i = 0 ∞ a i x i ) 2 \frac{1}{(1-ax)^2}=\left(\frac 1{1-ax}\right)^2=\left(\sum_{i=0}^\infty a^ix^i\right)^2 (1ax)21=(1ax1)2=(i=0aixi)2  换句话说,我们有 ( ∑ i = 0 ∞ a i x i ) 2 = 1 ( 1 − a x ) 2 = ∑ i = 0 ∞ ( i + 1 ) a i x i \left(\sum_{i=0}^\infty a^ix^i\right)^2=\frac{1}{(1-ax)^2}=\sum_{i=0}^{\infty}(i+1)a^ix^i (i=0aixi)2=(1ax)21=i=0(i+1)aixi
  
  除此之外,还需要掌握二项式定理广义二项式定理。其中二项式定理的严格证明需要用到数学归纳法,过程较为复杂,在此不再赘述,仅给出结论: ( x + y ) n = ∑ k = 0 n C n k x k y n − k (x+y)^n=\sum_{k=0}^nC_n^kx^{k}y^{n-k} (x+y)n=k=0nCnkxkynk  广义二项式定理则是对二项式定理的推广,它使得 n n n 的值域可以推广到全体实数。 ( x + y ) α = ∑ k = 0 ∞ ( α k ) x α − k y k \begin{aligned}(x+y)^\alpha=\sum_{k=0}^\infty\bigg(\begin{aligned}\alpha\\k\end{aligned}\bigg)x^{\alpha-k}y^{k}\end{aligned} (x+y)α=k=0(αk)xαkyk  其中 ( α k ) = α ( α − 1 ) ⋯ ( α − k + 1 ) k ! \bigg(\begin{aligned}\alpha\\k\end{aligned}\bigg)=\frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} (αk)=k!α(α1)(αk+1)

OGF \text{OGF} OGF 变形练习


例题1 给定三种硬币,面值分别为 1 , 2 , 5 1,2,5 1,2,5 并且给定三种硬币的数量分别为 a , b , c a,b,c a,b,c,求这些硬币所不能组成的最小面额。(hdu 1085)

 由于总面额是由所有面额相加,对应同底数幂相乘,底数不变,指数相加,因而我们将次数设定为面额,由于方案数量相乘,对应系数相乘,因而我们将系数设定为方案数量,则取面额为1的硬币的生成函数为:
∑ i = 0 a x i \sum_{i=0}^ax^i i=0axi  同理可得分别取面额为2和面额为5的硬币的生成函数,将它们的生成函数乘起来,得:
( ∑ i = 0 a x i ) ( ∑ j = 0 b x 2 j ) ( ∑ k = 0 c x 3 k ) \begin{aligned}\left(\sum_{i=0}^{a}x^i\right)\left(\sum_{j=0}^{b}x^{2j}\right)\left(\sum_{k=0}^{c}x^{3k}\right)\end{aligned} (i=0axi)(j=0bx2j)(k=0cx3k)  可以发现,结果的 n n n 次项系数 a n a_n an 即为组成面额为 n n n 的方案数。则答案为系数为 0 0 0 的最小次项的系数。若 n n n 较小,可以直接暴力拆式子,反之则需要FFT展开。


例题2 现在有两个商店 ,在其中一个商店中消费 i i i 元有 i i i 种方案,求在两个商店中共消费 n n n 元的方案数。

 由于两个商店的相同的,只需要考虑其中一个,可以写出其生成函数为: lim ⁡ n → ∞ ∑ i = 0 n i x i = lim ⁡ n → ∞ ∑ i = 1 n i x i \begin{aligned}\lim_{n→\infty}\sum_{i=0}^{n}ix^i=\lim_{n→\infty}\sum_{i=1}^{n}ix^i\end{aligned} nlimi=0nixi=nlimi=1nixi  则在两商店中消费的生成函数为上式的二次方,化简得: ( lim ⁡ n → ∞ ∑ i = 1 n i x i ) 2 = ( x lim ⁡ n → ∞ ∑ i = 0 n ( i + 1 ) x i ) 2 = ( x lim ⁡ n → ∞ ∑ i = 0 n C i + 1 1 a i x i ) 2 = ( x ( 1 − x ) 2 ) 2 = x 2 ( 1 − x ) 4 \begin{aligned}\left(\lim_{n→\infty}\sum_{i=1}^{n}ix^i\right)^2&=\left(x\lim_{n→\infty}\sum_{i=0}^{n}(i+1)x^i\right)^2\\ &=\left(x\lim_{n→\infty}\sum_{i=0}^{n}C_{i+1}^{1}a^ix^i\right)^2\\ &=\left(\frac{x}{(1-x)^2}\right)^2\\ &=\frac{x^2}{(1-x)^4}\\ \end{aligned} (nlimi=1nixi)2=(xnlimi=0n(i+1)xi)2=(xnlimi=0nCi+11aixi)2=((1x)2x)2=(1x)4x2  然后拆开: x 2 ( 1 − x ) 4 = x 2 ( lim ⁡ n → ∞ ∑ i = 0 n C i + 4 − 1 3 x i )     = lim ⁡ n → ∞ ∑ i = 0 n C i + 3 3 x i + 2 \begin{aligned}\frac{x^2}{(1-x)^4}&=x^2\left(\lim_{n→\infty}\sum_{i=0}^nC_{i+4-1}^{3}x^i\right)\\   &=\lim_{n→\infty}\sum_{i=0}^{n}C_{i+3}^3x^{i+2} \end{aligned} (1x)4x2  =x2(nlimi=0nCi+413xi)=nlimi=0nCi+33xi+2   则答案为上式的 n n n 次项系数。
  当 i + 2 = n i+2=n i+2=n 时, i = n − 2 i=n-2 i=n2 n n n 次项为 C n − 2 + 3 3 x n C_{n-2+3}^3x^n Cn2+33xn,故答案为 C n + 1 3 C_{n+1}^3 Cn+13


习题1 现在有ABCD四种物体,每种无限个。现在要你拿出共 n n n 个物体,要求A的个数必需是偶数,B的个数必须是 5 5 5 的倍数,C最多拿 4 4 4 个,D最多拿 1 1 1 个,求可行的方案数量。

 由题意写出并化简分别取ABCD的生成函数: A ( x ) = lim ⁡ n → ∞ ∑ i = 0 n x 2 i = 1 1 − x 2 B ( x ) = lim ⁡ n → ∞ ∑ i = 0 n x 5 i = 1 1 − x 5 C ( x ) = ∑ i = 0 4 x i = 1 − x 5 1 − x D ( x ) = ∑ i = 0 1 x i = 1 + x \begin{aligned} A(x)&=\lim_{n→\infty}\sum_{i=0}^nx^{2i}=\frac{1}{1-x^2}\\ B(x)&=\lim_{n→\infty}\sum_{i=0}^nx^{5i}=\frac{1}{1-x^5}\\ C(x)&=\sum_{i=0}^4 x^i=\frac{1-x^5}{1-x}\\ D(x)&=\sum_{i=0}^1 x^i=1+x\\ \end{aligned} A(x)B(x)C(x)D(x)=nlimi=0nx2i=1x21=nlimi=0nx5i=1x51=i=04xi=1x1x5=i=01xi=1+x  乘起来,化简,再展开得: ( 1 − x 5 ) ( 1 + x ) ( 1 − x 2 ) ( 1 − x 5 ) ( 1 − x ) = 1 + x ( 1 + x ) ( 1 − x ) ( 1 − x ) = 1 ( 1 − x ) 2 = lim ⁡ n → ∞ ∑ i = 0 n C i + 1 1 x i \begin{aligned} \frac{(1-x^5)(1+x)}{(1-x^2)(1-x^5)(1-x)}&=\frac{1+x}{(1+x)(1-x)(1-x)}\\ &=\frac{1}{(1-x)^2}\\ &=\lim_{n→\infty}\sum_{i=0}^nC_{i+1}^{1}x^i \end{aligned} (1x2)(1x5)(1x)(1x5)(1+x)=(1+x)(1x)(1x)1+x=(1x)21=nlimi=0nCi+11xi  因而答案为 n n n 次项前的系数 a i = C i + 1 1 = i + 1 a_i=C_{i+1}^1=i+1 ai=Ci+11=i+1


习题2 有A~H八种物品各无限个,你需要取出其中共 n n n 个,满足:
  A:偶数个
  B:0~1个
  C:0~2个
  D:奇数个
  E:4的倍数个
  F:0~3个
  G:不超过1个
  H:3的倍数个
  (BZOJ3028)

 写出分别取A~H的生成函数:
A ( x ) = ∑ i = 0 ∞ x 2 i = 1 1 − x 2 B ( x ) = 1 + x C ( x ) = 1 + x + x 2 = 1 − x 3 1 − x D ( x ) = ∑ i = 0 ∞ x 2 i + 1 = x ∑ i = 0 ∞ x 2 i = x 1 − x 2 E ( x ) = ∑ i = 0 ∞ x 4 i = 1 1 − x 4 F ( x ) = 1 + x + x 2 + x 3 = 1 − x 4 1 − x G ( x ) = 1 + x H ( x ) = ∑ i = 0 ∞ x 3 i = 1 1 − x 3 \begin{aligned} A(x)&=\sum_{i=0}^{\infty}x^{2i}=\frac{1}{1-x^2}\\ B(x)&=1+x\\ C(x)&=1+x+x^2=\frac{1-x^3}{1-x}\\ D(x)&=\sum_{i=0}^{\infty}x^{2i+1}=x\sum_{i=0}^{\infty}x^{2i}=\frac{x}{1-x^2}\\ E(x)&=\sum_{i=0}^{\infty}x^{4i}=\frac{1}{1-x^4}\\ F(x)&=1+x+x^2+x^3=\frac{1-x^4}{1-x}\\ G(x)&=1+x\\ H(x)&=\sum_{i=0}^{\infty}x^{3i}=\frac{1}{1-x^3}\\ \end{aligned} A(x)B(x)C(x)D(x)E(x)F(x)G(x)H(x)=i=0x2i=1x21=1+x=1+x+x2=1x1x3=i=0x2i+1=xi=0x2i=1x2x=i=0x4i=1x41=1+x+x2+x3=1x1x4=1+x=i=0x3i=1x31  相乘并化简,得: x ( 1 + x ) 2 ( 1 − x 3 ) ( 1 − x 4 ) ( 1 − x 2 ) 2 ( 1 − x ) 2 ( 1 − x 4 ) ( 1 − x 3 ) = x ( 1 + x ) 2 ( 1 − x 2 ) 2 ( 1 − x ) 2 = x ( 1 + x ) 2 ( 1 + x ) 2 ( 1 − x ) 4 = x ( 1 − x ) 4 \begin{aligned} \frac{x(1+x)^2(1-x^3)(1-x^4)}{(1-x^2)^2(1-x)^2(1-x^4)(1-x^3)} &=\frac{x(1+x)^2}{(1-x^2)^2(1-x)^2}\\ &=\frac{x(1+x)^2}{(1+x)^2(1-x)^4}\\ &=\frac{x}{(1-x)^4}\\ \end{aligned} (1x2)2(1x)2(1x4)(1x3)x(1+x)2(1x3)(1x4)=(1x2)2(1x)2x(1+x)2=(1+x)2(1x)4x(1+x)2=(1x)4x  然后再展开,得: x ( 1 − x ) 4 = x ( ∑ i = 0 ∞ C i + 3 3 x i ) = ∑ i = 0 ∞ C i + 3 3 x i + 1 \begin{aligned}\frac{x}{(1-x)^4}&=x\left(\sum_{i=0}^\infty C_{i+3}^{3}x^i\right)\\&=\sum_{i=0}^\infty C_{i+3}^3x^{i+1}\end{aligned} (1x)4x=x(i=0Ci+33xi)=i=0Ci+33xi+1  当 n = i + 1 n=i+1 n=i+1 时, i = n − 1 i=n-1 i=n1,故答案为 C i + 2 3 C_{i+2}^3 Ci+23


例题3 求序列 a i = i 2 a_i=i^2 ai=i2 的生成函数。

 令该序列的生成函数为 F ( x ) F(x) F(x),则:
F ( x ) = ∑ i = 0 ∞ i 2 x i = ∑ i = 1 ∞ i 2 x i (1) F(x)=\sum_{i=0}^\infty i^2x^i=\sum_{i=1}^\infty i^2x^i\tag{1} F(x)=i=0i2xi=i=1i2xi(1)  考虑到系数中的二次方不好处理,尝试将其转换为一次。我们有: x F ( x ) = ∑ i = 0 ∞ i 2 x i + 1 (2) xF(x)=\sum_{i=0}^\infty i^2x^{i+1}\tag{2} xF(x)=i=0i2xi+1(2)   ( 1 ) (1) (1)式减 ( 2 ) (2) (2)式得: F ( x ) − x F ( x ) = ∑ i = 1 ∞ i 2 x i − ∑ i = 0 ∞ i 2 x i + 1 = ∑ i = 1 ∞ i 2 x i − ∑ i = 1 ∞ ( i − 1 ) 2 x i = ∑ i = 1 ∞ ( i 2 − ( i − 1 ) 2 ) x i = ∑ i = 1 ∞ ( 2 i − 1 ) x i = 2 ∑ i = 1 ∞ i x i − ∑ i = 1 ∞ x i = 2 x ∑ i = 0 ∞ ( i + 1 ) x i − x ∑ i = 0 ∞ x i = 2 x ( 1 − x ) 2 − x 1 − x = 2 x − x ( 1 − x ) ( 1 − x ) 2 = x 2 + x ( 1 − x ) 2 = x ( x + 1 ) ( 1 − x ) 2 \begin{aligned}F(x)-xF(x) &=\sum_{i=1}^\infty i^2x^i-\sum_{i=0}^\infty i^2x^{i+1}\\ &=\sum_{i=1}^\infty i^2x^i-\sum_{i=1}^\infty (i-1)^2x^{i}\\ &=\sum_{i=1}^\infty \left(i^2-\left(i-1\right)^2\right)x^i\\ &=\sum_{i=1}^\infty \left(2i-1\right)x^i\\ &=2\sum_{i=1}^\infty ix^i-\sum_{i=1}^\infty x^i\\ &=2x\sum_{i=0}^\infty (i+1)x^{i}-x\sum_{i=0}^\infty x^i\\ &=\frac{2x}{(1-x)^2}-\frac{x}{1-x}\\ &=\frac{2x-x(1-x)}{(1-x)^2}\\ &=\frac{x^2+x}{(1-x)^2}\\ &=\frac{x(x+1)}{(1-x)^2} \end{aligned} F(x)xF(x)=i=1i2xii=0i2xi+1=i=1i2xii=1(i1)2xi=i=1(i2(i1)2)xi=i=1(2i1)xi=2i=1ixii=1xi=2xi=0(i+1)xixi=0xi=(1x)22x1xx=(1x)22xx(1x)=(1x)2x2+x=(1x)2x(x+1)  因而有: ( 1 − x ) F ( x ) = x ( x + 1 ) ( 1 − x ) 2 (1-x)F(x)=\frac{x(x+1)}{(1-x)^2} (1x)F(x)=(1x)2x(x+1)  最终得到:
F ( x ) = x ( x + 1 ) ( 1 − x ) 3 F(x)=\frac{x(x+1)}{(1-x)^3} F(x)=(1x)3x(x+1)


例题4 写出卡特兰数的递推式。

 令第 n n n 个卡特兰数为 f n f_n fn,根据定义可得:
f n = [ n = 0 ] + ∑ i = 0 n − 1 f i f n − i − 1 f_n=[n=0]+\sum_{i=0}^{n-1}f_if_{n-i-1} fn=[n=0]+i=0n1fifni1  设其生成函数为 F ( x ) F(x) F(x),则
F ( x ) = ∑ n = 0 ∞ f n x n = 1 + ∑ n = 1 ∞ f n x n = 1 + ∑ n = 1 ∞ ( ∑ i = 0 n − 1 f i f n − i − 1 ) x n = 1 + x ∑ n = 1 ∞ ( ∑ i = 0 n − 1 f i x i ⋅ f n − i − 1 x n − i − 1 ) = 1 + x F 2 ( x ) \begin{aligned}F(x) &=\sum_{n=0}^\infty f_nx^n\\ &=1+\sum_{n=1}^\infty f_nx^n\\ &=1+\sum_{n=1}^\infty \left(\sum_{i=0}^{n-1}f_if_{n-i-1}\right)x^n\\ &=1+x\sum_{n=1}^\infty \left(\sum_{i=0}^{n-1}f_ix^i\cdot f_{n-i-1}x^{n-i-1}\right)\\ &=1+xF^2(x)\\ \end{aligned} F(x)=n=0fnxn=1+n=1fnxn=1+n=1(i=0n1fifni1)xn=1+xn=1(i=0n1fixifni1xni1)=1+xF2(x)整理一下,得: x F 2 ( x ) − F ( x ) + 1 = 0 xF^2(x)-F(x)+1=0 xF2(x)F(x)+1=0  以 F ( x ) F(x) F(x) 为未知数,解方程,得: Δ = ( − 1 ) 2 − 4 x = 1 − 4 x F 1 ( x ) = − ( − 1 ) + Δ 2 x = 1 + 1 − 4 x 2 x F 2 ( x ) = − ( − 1 ) − Δ 2 x = 1 − 1 − 4 x 2 x \begin{aligned} \Delta&=(-1)^2-4x=1-4x\\ F_1(x)&=\frac{-(-1)+\sqrt{\Delta}}{2x}=\frac{1+\sqrt{1-4x}}{2x}\\ F_2(x)&=\frac{-(-1)-\sqrt{\Delta}}{2x}=\frac{1-\sqrt{1-4x}}{2x} \end{aligned} ΔF1(x)F2(x)=(1)24x=14x=2x(1)+Δ =2x1+14x =2x(1)Δ =2x114x 这里的正负号取哪一个?考虑到 F ( 0 ) = f 0 x 0 = 1 F(0)=f_0x^0=1 F(0)=f0x0=1 而由洛必达法则 lim ⁡ x → 0 F 1 ( x ) = lim ⁡ x → 0 1 + 1 − 4 x 2 x = lim ⁡ x → 0 − 1 1 − 4 x = − 1 \lim_{x→0}F_1(x)=\lim_{x→0}\frac{1+\sqrt{1-4x}}{2x}=\lim_{x→0}-\frac{1}{\sqrt{1-4x}}=-1 x0limF1(x)=x0lim2x1+14x =x0lim14x 1=1 lim ⁡ x → 0 F 2 ( x ) = lim ⁡ x → 0 1 − 1 − 4 x 2 x = lim ⁡ x → 0 1 1 − 4 x = 1 \lim_{x→0}F_2(x)=\lim_{x→0}\frac{1-\sqrt{1-4x}}{2x}=\lim_{x→0}\frac{1}{\sqrt{1-4x}}=1 x0limF2(x)=x0lim2x114x =x0lim14x 1=1因而有 F ( x ) = 1 − 1 − 4 x 2 x = 1 − ( 1 − 4 x ) 1 2 2 x F(x)=\frac{1-\sqrt{1-4x}}{2x}=\frac{1-(1-4x)^{\frac 12}}{2x} F(x)=2x114x =2x1(14x)21看到分数指数幂,应该能想到用广义二项式定理。
( 1 − 4 x ) 1 2 = ∑ n = 0 ∞ ( 1 2 n ) ( − 4 x ) n (3) \begin{aligned} (1-4x)^{\large\frac 12}&=\sum_{n=0}^\infty {{\frac 12} \choose n}(-4x)^n\tag{3}\\ \end{aligned} (14x)21=n=0(n21)(4x)n(3)其中 ( 1 2 n ) = 1 2 ( 1 2 − 1 ) … ( 1 2 − n + 1 ) n ! = ∏ i = 0 n − 1 1 2 − i n ! = ∏ i = 0 n − 1 1 − 2 i 2 n ! = ∏ i = 1 n − 1 ( 1 − 2 i ) 2 n n ! = ( − 1 ) × ( − 3 ) × ( − 5 ) × ⋯ × ( 3 − 2 n ) 2 n n ! = ( − 1 ) n − 1 × 1 × 3 × 5 × ⋯ × ( 2 n − 3 ) 2 n n ! = ( − 1 ) n − 1 × ( 2 n − 2 ) ! 2 n n ! × 2 × 4 × ⋯ × ( 2 n − 2 ) = ( − 1 ) n − 1 × ( 2 n − 2 ) ! 2 2 n − 1 n ! ( n − 1 ) ! \begin{aligned}\frac{1}{2}\choose n &=\frac{{\frac 12}\left({\frac 12}-1\right)\dots\left({\frac 12}-n+1\right)}{n!}\\ &=\frac{{\prod_{i=0}^{n-1}{\frac 12}}-i}{n!}=\frac{\prod_{i=0}^{n-1}{\frac {1-2i}{2}}}{n!}=\frac {\prod_{i=1}^{n-1}(1-2i)}{2^{n}n!}\\ &=\frac {(-1)\times(-3)\times(-5)\times \cdots\times(3-2n)}{2^{n}n!}\\ &=\frac {(-1)^{n-1}\times 1\times3\times5\times \cdots\times(2n-3)}{2^{n}n!}\\ &=\frac {(-1)^{n-1}\times(2n-2)!}{2^{n}n!\times 2\times 4\times\dots\times (2n-2)}\\ &=\frac {(-1)^{n-1}\times(2n-2)!}{2^{2n-1}n!(n-1)!}\\ \end{aligned} (n21)=n!21(211)(21n+1)=n!i=0n121i=n!i=0n1212i=2nn!i=1n1(12i)=2nn!(1)×(3)×(5)××(32n)=2nn!(1)n1×1×3×5××(2n3)=2nn!×2×4××(2n2)(1)n1×(2n2)!=22n1n!(n1)!(1)n1×(2n2)!回代 ( 3 ) (3) (3) 式有 ( 1 − 4 x ) 1 2 = ∑ n = 0 ∞ ( − 1 ) n − 1 × ( 2 n − 2 ) ! 2 2 n − 1 n ! ( n − 1 ) ! ( − 4 x ) n = ∑ n = 0 ∞ ( − 1 ) n − 1 × ( 2 n − 2 ) ! 2 2 n − 1 n ! ( n − 1 ) ! ( − 1 ) n 2 2 n x n = ∑ n = 0 ∞ − 2 × ( 2 n − 2 ) ! n ! ( n − 1 ) ! x n = 1 − 2 ∑ n = 1 ∞ ( 2 n − 2 ) ! n ! ( n − 1 ) ! x n \begin{aligned}(1-4x)^{\frac 12}&=\sum_{n=0}^\infty \frac {(-1)^{n-1}\times(2n-2)!}{2^{2n-1}n!(n-1)!}(-4x)^n\\ &=\sum_{n=0}^\infty \frac {(-1)^{n-1}\times(2n-2)!}{2^{2n-1}n!(n-1)!}(-1)^n2^{2n}x^n\\ &=\sum_{n=0}^\infty -2\times \frac {(2n-2)!}{n!(n-1)!}x^n\\ &=1-2\sum_{n=1}^\infty \frac {(2n-2)!}{n!(n-1)!}x^n\\ \end{aligned} (14x)21=n=022n1n!(n1)!(1)n1×(2n2)!(4x)n=n=022n1n!(n1)!(1)n1×(2n2)!(1)n22nxn=n=02×n!(n1)!(2n2)!xn=12n=1n!(n1)!(2n2)!xn回代,得: F ( x ) = 1 − ( 1 − 2 ∑ n = 1 ∞ ( 2 n − 2 ) ! n ! ( n − 1 ) ! x n ) 2 x = ∑ n = 1 ∞ ( 2 n − 2 ) ! n ! ( n − 1 ) ! x n x = ∑ n = 0 ∞ ( 2 ( n + 1 ) − 2 ) ! ( n + 1 ) ! ( ( n + 1 ) − 1 ) ! x n = ∑ n = 0 ∞ ( 2 n ) ! n ! ( n + 1 ) ! x n = ∑ n = 0 ∞ ( 2 n ) ! n ! ( 2 n − n ) ! n + 1 x n = ∑ n = 0 ∞ C 2 n n n + 1 x n \begin{aligned} F(x)&=\frac{1-\left(1-2{\sum_{ n=1}^{\infty}} {\frac {(2n-2)!}{n!(n-1)!}}x^n\right)}{2x}\\ &=\frac {{\sum_{ n=1}^{\infty}} {\frac {(2n-2)!}{n!(n-1)!}}x^n}{x}\\ &={\sum\limits_{n=0}^{\infty}} {\frac {(2(n+1)-2)!}{(n+1)!((n+1)-1)!}}x^n\\ &={\sum\limits_{n=0}^{\infty}} {\frac {(2n)!}{n!(n+1)!}}x^n\\ &={\sum\limits_{n=0}^{\infty}} {\frac {\frac{(2n)!}{n!(2n-n)!}}{n+1}}x^n\\ &={\sum\limits_{n=0}^{\infty}} {\frac { C_{2n}^n}{n+1}}x^n\\ \end{aligned} F(x)=2x1(12n=1n!(n1)!(2n2)!xn)=xn=1n!(n1)!(2n2)!xn=n=0(n+1)!((n+1)1)!(2(n+1)2)!xn=n=0n!(n+1)!(2n)!xn=n=0n+1n!(2nn)!(2n)!xn=n=0n+1C2nnxn因而有 f n = C 2 n n n + 1 f_n=\frac{ C_{2n}^n}{n+1} fn=n+1C2nn这就是我们要的结论了。


例题4 求斐波那契数列的通项式。

 首先写出它的递推式: f 0 = 0 , f 1 = 1 , f i = f i − 1 + f i − 2 f_0=0,f_1=1,f_i=f_{i-1}+f_{i-2} f0=0,f1=1,fi=fi1+fi2,设其生成函数为 F ( x ) F(x) F(x),则
F ( x ) = ∑ i = 0 ∞ f i x i = x + ∑ i = 2 ∞ f i x i = x + ∑ i = 2 ∞ ( f i − 1 + f i − 2 ) x i = x + ∑ i = 2 ∞ f i − 1 x i + ∑ i = 2 ∞ f i − 2 x i = x + x ∑ i = 2 ∞ f i − 1 x i − 1 + x 2 ∑ i = 2 ∞ f i − 2 x i − 2 = x + x ∑ i = 1 ∞ f i − 1 x i − 1 + x 2 ∑ i = 2 ∞ f i − 2 x i − 2 = x + x ∑ i = 0 ∞ f i x i + x 2 ∑ i = 0 ∞ f i x i = x + x F ( x ) + x 2 F ( x ) \begin{aligned} F(x)&=\sum_{i=0}^\infty f_ix^i\\ &=x+\sum_{i=2}^\infty f_ix^i\\ &=x+\sum_{i=2}^\infty (f_{i-1}+f_{i-2})x^i\\ &=x+\sum_{i=2}^\infty f_{i-1}x^i+\sum_{i=2}^\infty f_{i-2}x^i\\ &=x+x\sum_{i=2}^\infty f_{i-1}x^{i-1}+x^2\sum_{i=2}^\infty f_{i-2}x^{i-2}\\ &=x+x\sum_{i=1}^\infty f_{i-1}x^{i-1}+x^2\sum_{i=2}^\infty f_{i-2}x^{i-2}\\ &=x+x\sum_{i=0}^\infty f_{i}x^{i}+x^2\sum_{i=0}^\infty f_{i}x^{i}\\ &=x+xF(x)+x^2F(x)\\ \end{aligned} F(x)=i=0fixi=x+i=2fixi=x+i=2(fi1+fi2)xi=x+i=2fi1xi+i=2fi2xi=x+xi=2fi1xi1+x2i=2fi2xi2=x+xi=1fi1xi1+x2i=2fi2xi2=x+xi=0fixi+x2i=0fixi=x+xF(x)+x2F(x)  整理,得
( x 2 + x − 1 ) F ( x ) = − x (x^2+x-1)F(x)=-x (x2+x1)F(x)=x  解得 F ( x ) = x 1 − x − x 2 = x × 1 1 − x − x 2 F(x)=\frac{x}{1-x-x^2}=x\times \frac{1}{1-x-x^2} F(x)=1xx2x=x×1xx21  后面部分的生成函数似乎无法展开,那怎么办?考虑裂项。设 A 1 − a x + B 1 − b x = 1 1 − x − x 2 \frac{A}{1-ax}+\frac{B}{1-bx}=\frac{1}{1-x-x^2} 1axA+1bxB=1xx21  通分,得 A ( 1 − b x ) + B ( 1 − a x ) ( 1 − a x ) ( 1 − b x ) = x 1 − x − x 2 \frac{A(1-bx)+B(1-ax)}{(1-ax)(1-bx)}=\frac{x}{1-x-x^2} (1ax)(1bx)A(1bx)+B(1ax)=1xx2x   化简,得 A + B − ( A b + B a ) x 1 − ( a + b ) x + a b x = 1 1 − x − x 2 \frac{A+B-(Ab+Ba)x}{1-(a+b)x+abx}=\frac{1}{1-x-x^2} 1(a+b)x+abxA+B(Ab+Ba)x=1xx21  对比两侧系数,可得方程组
{ A + B = 1 A b + B a = 0 a + b = 1 a b = − 1 \begin{cases} &A+B&=&1\\ &Ab+Ba&=&0\\ &a+b&=&1\\ &ab&=&-1 \end{cases} A+BAb+Baa+bab====1011  解得1
{ A = a 5 B = − b 5 a = 1 + 5 2 b = 1 − 5 2 \begin{cases} A&=\dfrac a{\sqrt 5}\\ B&=-\dfrac b{\sqrt 5}\\ a&=\dfrac{1+\sqrt 5}{2}\\ b&=\cfrac{1-\sqrt 5}{2} \end{cases} ABab=5 a=5 b=21+5 =215   回代,得
F ( x ) = x × 1 1 − x − x 2 = x ( a 5 × 1 1 − a x − b 5 × 1 1 − b x ) = 1 5 × a x 1 − a x − 1 5 × a x 1 − b x = 1 5 × ∑ i = 0 ∞ a i + 1 x i + 1 − 1 5 × ∑ i = 1 ∞ b i + 1 x i + 1 = 1 5 × ( ∑ i = 0 ∞ a i + 1 x i + 1 − ∑ i = 1 ∞ b i + 1 x i + 1 ) = ∑ i = 1 ∞ 1 5 ( a i − b i ) x i = ∑ i = 0 ∞ 1 5 ( a i − b i ) x i \begin{aligned}F(x) &=x\times \frac1{1-x-x^2}\\ &=x\left(\dfrac a{\sqrt 5}\times \frac{1}{1-ax}-\frac{b}{\sqrt 5}\times \frac 1{1-bx}\right)\\ &=\dfrac 1{\sqrt 5}\times \frac{ax}{1-ax}-\frac{1}{\sqrt 5}\times \frac {ax}{1-bx}\\ &=\dfrac 1{\sqrt 5}\times \sum_{i=0}^\infty a^{i+1}x^{i+1}-\frac{1}{\sqrt 5}\times \sum_{i=1}^\infty b^{i+1}x^{i+1}\\ &=\dfrac 1{\sqrt 5}\times \left(\sum_{i=0}^\infty a^{i+1}x^{i+1}-\sum_{i=1}^\infty b^{i+1}x^{i+1}\right)\\ &=\sum_{i=1}^\infty \dfrac 1{\sqrt 5}\left(a^{i}-b^{i}\right)x^{i}\\ &=\sum_{i=0}^\infty \dfrac 1{\sqrt 5}\left(a^{i}-b^{i}\right)x^{i}\\ \end{aligned} F(x)=x×1xx21=x(5 a×1ax15 b×1bx1)=5 1×1axax5 1×1bxax=5 1×i=0ai+1xi+15 1×i=1bi+1xi+1=5 1×(i=0ai+1xi+1i=1bi+1xi+1)=i=15 1(aibi)xi=i=05 1(aibi)xi

%   因而 n n n 次项系数即为斐波那契数列第 n n n
f n = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] f_n=\frac{1}{\sqrt 5}\left[\left(\dfrac{1+\sqrt 5}{2}\right)^n-\left(\dfrac{1-\sqrt 5}{2}\right)^n\right] fn=5 1[(21+5 )n(215 )n]


例题5 已知序列的递推式和边界 a 0 = 2 , a n = 3 a n − 1 + 2 a_0=2,a_n=3a_{n-1}+2 a0=2,an=3an1+2,求通项公式。

 还是一样,怎么麻烦怎么来
F ( x ) = ∑ n = 0 ∞ a n x n = 2 + ∑ n = 1 ∞ ( 3 a n − 1 + 2 ) x n = 2 + ∑ n = 1 ∞ 3 a n − 1 x n + 2 x n = 2 + 3 x ∑ n = 1 ∞ a n − 1 x n − 1 + 2 ∑ n = 1 ∞ x n = 3 x ∑ n = 0 ∞ a n − 1 x n − 1 + 2 ∑ n = 0 ∞ x n = 3 x F ( x ) + 2 1 − x \begin{aligned} F(x)&=\sum_{n=0}^\infty a_nx^n\\ &=2+\sum_{n=1}^\infty (3a_{n-1}+2)x^n\\ &=2+\sum_{n=1}^\infty 3a_{n-1}x^n+2x^n\\ &=2+3x\sum_{n=1}^\infty a_{n-1}x^{n-1}+2\sum_{n=1}^\infty x^n\\ &=3x\sum_{n=0}^\infty a_{n-1}x^{n-1}+2\sum_{n=0}^\infty x^n\\ &=3xF(x)+\frac{2}{1-x}\\ \end{aligned} F(x)=n=0anxn=2+n=1(3an1+2)xn=2+n=13an1xn+2xn=2+3xn=1an1xn1+2n=1xn=3xn=0an1xn1+2n=0xn=3xF(x)+1x2  整理,得
F ( x ) = 2 × 1 1 − x × 1 1 − 3 x = 2 × ( ∑ i = 0 ∞ x i ) × ( ∑ j = 0 ∞ 3 j x j ) \begin{aligned} F(x)&=2\times \frac 1{1-x}\times \frac{1}{1-3x}\\ &=2\times \left(\sum_{i=0}^\infty x^i\right)\times \left(\sum_{j=0}^\infty 3^jx^j\right)\\ \end{aligned} F(x)=2×1x1×13x1=2×(i=0xi)×(j=03jxj)  我们枚举第二个括号中选择的项的次数 k k k,则 n n n 次项系数为 a n = 2 ∑ k = 0 n 1 n − k 3 k = 2 ∑ k = 0 n 3 k = 2 × 1 − 3 n + 1 1 − 3 = 3 n + 1 − 1 a_n=2\sum_{k=0}^n1^{n-k}3^{k}=2\sum_{k=0}^n3^k=2\times \frac{1-3^{n+1}}{1-3}=3^{n+1}-1 an=2k=0n1nk3k=2k=0n3k=2×1313n+1=3n+11  也就是我们要的通项式。


习题4 已知递推式 a 1 = 1 , a n = 2 a n − 1 + 3 n − 1 a_1=1,a_n=2a_{n-1}+3^{n-1} a1=1,an=2an1+3n1,求它的通项式。

 我们可以先考虑 a 0 = 1 , a n = 2 a n − 1 + 3 n a_0=1,a_{n}=2a_{n-1}+3^{n} a0=1,an=2an1+3n,然后整体移动一位。令 a a a 的生成函数为 F ( x ) F(x) F(x),则
F ( x ) = ∑ n = 0 ∞ a i x n = ∑ n = 0 ∞ ( [ n = 0 ] + 2 a n − 1 + 3 n ) x n = 1 + ∑ n = 1 ∞ ( 2 a n − 1 + 3 n ) x n = 1 + x ∑ n = 1 ∞ 2 a n − 1 x n − 1 + ∑ n = 1 ∞ 3 n x n = 1 + 2 x ∑ n = 1 ∞ a n − 1 x n − 1 + ( ∑ n = 0 ∞ 3 n x n ) − 1 = 2 x F ( x ) + 1 1 − 3 x \begin{aligned} F(x)&=\sum_{n=0}^\infty a_ix^n\\ &=\sum_{n=0}^\infty\left([n=0]+2a_{n-1}+3^{n}\right)x^n\\ &=1+\sum_{n=1}^\infty\left(2a_{n-1}+3^{n}\right)x^n\\ &=1+x\sum_{n=1}^\infty 2a_{n-1}x^{n-1}+\sum_{n=1}^\infty3^{n}x^n\\ &=1+2x\sum_{n=1}^\infty a_{n-1}x^{n-1}+\left(\sum_{n=0}^\infty3^{n}x^n\right)-1\\ &=2xF(x)+\frac {1}{1-3x}\\ \end{aligned} F(x)=n=0aixn=n=0([n=0]+2an1+3n)xn=1+n=1(2an1+3n)xn=1+xn=12an1xn1+n=13nxn=1+2xn=1an1xn1+(n=03nxn)1=2xF(x)+13x1  整理,得
F ( x ) = 1 1 − 2 x × 1 1 − 3 x = ( ∑ i = 0 ∞ 2 i x i ) ( ∑ j = 0 ∞ 3 j x j ) \begin{aligned} F(x)&=\frac{1}{1-2x}\times\frac1{1-3x}\\ &=\left(\sum_{i=0}^\infty2^ix^i\right)\left(\sum_{j=0}^\infty3^jx^j\right) \end{aligned} F(x)=12x1×13x1=(i=02ixi)(j=03jxj)  因而 n n n 次项系数为
a n = ∑ k = 0 n 2 k × 3 n − k \begin{aligned}a_n&=\sum_{k=0}^n2^k\times 3^{n-k} \end{aligned} an=k=0n2k×3nk  可以发现,这是个等比数列,公比为 2 3 \dfrac 23 32,因而有
a n = ∑ k = 0 n 3 n × ( 2 3 ) k = 3 n ∑ k = 0 n ( 2 3 ) k = 3 n × 1 − ( 2 3 ) n + 1 1 − 2 3 = 3 n + 1 × ( 1 − ( 2 3 ) n + 1 ) = 3 n + 1 × ( 1 − 2 n + 1 3 n + 1 ) = 3 n + 1 − 2 n + 1 \begin{aligned} a_n&=\sum_{k=0}^n3^n\times \left(\frac 23\right)^k\\ &=3^n\sum_{k=0}^n\left(\frac 23\right)^k\\ &=3^n\times \frac{1-\left({\large\frac 2 3}\right)^{n+1}}{1-{\large\frac 23}}\\ &=3^{n+1}\times\left( 1-\left({\frac 2 3}\right)^{n+1}\right)\\ &=3^{n+1}\times(1-\frac{2^{n+1}}{3^{n+1}})\\ &=3^{n+1}-2^{n+1}\\ \end{aligned} an=k=0n3n×(32)k=3nk=0n(32)k=3n×1321(32)n+1=3n+1×(1(32)n+1)=3n+1×(13n+12n+1)=3n+12n+1  因而满足递推式 a 1 = 1 , a n = 2 a n − 1 + 3 n a_1=1,a_n=2a_{n-1}+3^n a1=1,an=2an1+3n 的数列的通项公式为 a n = 3 n − 2 n a_n=3^{n}-2^{n} an=3n2n

EGF \text{EGF} EGF 变形

        对于 EGF \text{EGF} EGF,最重要的一条公式为:
e a x = ∑ i = 1 ∞ ( a i x i i ! ) e^{ax}=\sum_{i=1}^\infty \left(\frac{a^ix^i}{i!}\right) eax=i=1(i!aixi)
 令 e x = ∑ i = 0 ∞ c i x i (4) e^x=\sum_{i=0}^\infty c_ix^i\tag{4} ex=i=0cixi(4)  两边同时求导,得到: e x = ∑ i = 1 ∞ i ⋅ c i x i − 1 = ∑ i = 0 ∞ ( i + 1 ) c i + 1 x i \begin{aligned}e^x&=\sum_{i=1}^\infty i\cdot c_ix^{i-1}\\&=\sum_{i=0}^\infty (i+1)c_{i+1}x^{i}\end{aligned} ex=i=1icixi1=i=0(i+1)ci+1xi  因而有: ∑ i = 0 ∞ c i x i = ∑ i = 0 ∞ ( i + 1 ) c i + 1 x i \sum_{i=0}^\infty c_ix^i=\sum_{i=0}^\infty (i+1)c_{i+1}x^{i} i=0cixi=i=0(i+1)ci+1xi  由于相等的两个多项式其相同次项前的系数相等,有: c i = ( i + 1 ) c i + 1 \begin{aligned}c_i&=(i+1)c_{i+1}\end{aligned} ci=(i+1)ci+1  等式两侧同时除以 ( i + 1 ) (i+1) (i+1),得: c i + 1 = c i i + 1 = c 0 ( i + 1 ) ! \begin{aligned}c_{i+1} =\frac{c_i}{i+1}=\frac{c_0}{(i+1)!} \end{aligned} ci+1=i+1ci=(i+1)!c0  回代 ( 4 ) (4) (4) 式,得: e x = ∑ i = 0 ∞ c 0 i ! x i = c 0 ( ∑ i = 0 ∞ x i i ! ) (5) \begin{aligned}e^{x}=\sum_{i=0}^\infty \frac{c_0}{i!}x^i=c_0\left(\sum_{i=0}^\infty \frac {x^i}{i!}\right)\tag{5} \end{aligned} ex=i=0i!c0xi=c0(i=0i!xi)(5)  当 x = 0 x=0 x=0 时,有:
1 = e 0 = c 0 ( ∑ i = 0 ∞ 0 i i ! ) = c 0 ( 0 0 + 0 ) = c 0 1=e^{0}=c_0\left(\sum_{i=0}^\infty \frac {0^i}{i!}\right)=c_0\left(0^0+0\right)=c_0 1=e0=c0(i=0i!0i)=c0(00+0)=c0  回代 ( 5 ) (5) (5) 式,得: e x = ∑ i = 0 ∞ x i i ! e^x=\sum_{i=0}^\infty \frac{x^i}{i!} ex=i=0i!xi  令 x = a x ′ x=ax' x=ax,则有: e a x ′ ∑ i = 0 ∞ = a i x i i ! e^{ax'}\sum_{i=0}^\infty=\frac{a^ix^i}{i!} eaxi=0=i!aixi  得证。


  1. 这是个对称的二元方程,由于 a a a b b b 可以交换,因而这里只需要保留其中一个解即可。 ↩︎

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值