本节对一些Python重整的操作进行对比。
随机导入random.choices(seq, k=1 ) #长度为k的列表,有放回采样random.sample(seq, k) #长度为k的列表,无放回采样
func=lambda y: x + y # x 的值在函数运行时被绑定func=lambda y, x=x: x + y # x 的值在函数定义时被绑定
import copy y=copy.copy(x) # 只复制最速y=copy . deepcopy(x) # 复制所有隐藏部分
复制和变量结合时,容易重新组合:
a = [ 1 , 2 , [ 3 , 4 ]]#别名。b_alias = a 断言b_alias == a并且b_alias是一个# 浅拷贝。b_shallow_copy = a[:] 断言b_shallow_copy ==一个和b_shallow_copy就是 不一个和b_shallow_copy [ 2 ]是一个[ 2 ]# 深拷贝。导入副本b_deep_copy = copy.deepcopy(a) 断言b_deep_copy ==一个和b_deep_copy就是 不一个和b_deep_copy [ 2 ]是 不一个[ 2 ]
对异名的修改影响原变量,(浅)复制中的元素是列表中的元素,而原变量是还原的进行复制,对还原的修改不影响原变量。
x==y # 两引用对象是否有相同的值x 是 y # 两引用是否关联对象
type(a)==int # 忽略面向对象设计中的多态特征isinstance(a, int) # 考虑了面向对象设计中的多态特征
str.find(sub, start=None, end=None); str.rfind(...) # 如果找不到返回-1str.index(sub, start=None, end=None); str.rindex(...) # 如果找不到抛出ValueError异常
这个只是习惯问题,前向索引时下标从0开始,如果反向索引也想从0开始可以使用~。
print(a[-1], a[-2], a[-3])print(a[~0], a[~1], a[~2])
不少 Python 的用户是从以前 C/C++ 迁移过来的,这两种语言在语法、代码风格等方面有些不同,本节简要进行介绍。
C/C++ 的习惯是定义一个很大的数字,Python 中有 inf 和 -inf:
a=float('inf')b=float('-inf')
C/C++ 的习惯是使用 0 和非 0 值表示 True 和 False, Python 建议直接使用 True 和 False 表示布尔值。
a=Trueb=False
C/C++ 对空指针判断的习惯是 if (a) 和 if (!a)。Python 对于 None 的判断是:
if x is None: pass
如果使用 if not x,则会将其他的对象(比如长度为 0 的字符串、列表、元组、字典等)都会被当做 False。
C/C++ 的习惯是定义一个临时变量,用来交换值。利用 Python 的 Tuple 操作,可以一步到位。
a, b=b, a
C/C++ 的习惯是用两个条件。利用 Python 可以一步到位。
if 0 < a < 5: pass
C/C++ 的习惯是把类成员设为 private,通过一系列的 Set 和 Get 函数存取其中的值。在 Python 中虽然也可以通过 @property、@setter、@deleter 设置对应的 Set 和 Get 函数,我们应避免不必要的抽象,这会比直接访问慢 4 - 5 倍。
C/C++ 的习惯是把输入输出参数都列为函数的参数,通过指针改变输出参数的值,函数的返回值是执行状态,函数调用方对返回值进行检查,判断是否成功执行。在 Python 中,不需要函数调用方进行返回值检查,函数中遇到特殊情况,直接抛出一个异常。
相比 C/C++,Python 读文件要简单很多,打开后的文件是一个可迭代对象,每次返回一行内容。
with open(file_path, 'rt', encoding='utf-8') as f: for line in f: print(line) # 末尾的
会保留
C/C++ 的习惯通常直接用 + 将路径拼接,这很容易出错,Python 中的 os.path.join 会自动根据操作系统不同补充路径之间的 / 或 \ 分隔符:
import osos.path.join('usr', 'lib', 'local')
虽然 Python 中也可以像 C/C++ 一样使用 sys.argv 直接解析命令行选择,但是使用 argparse 下的 ArgumentParser 工具更加方便,功能更加强大。
虽然 Python 中也可以像 C/C++ 一样使用 os.system 直接调用外部命令,但是使用 subprocess.check_output 可以自由选择是否执行 Shell,也可以获得外部命令执行结果。
import subprocess# 如果外部命令返回值非0,则抛出subprocess.CalledProcessError异常result=subprocess.check_output(['cmd', 'arg1', 'arg2']).decode('utf-8') # 同时收集标准输出和标准错误result=subprocess.check_output(['cmd', 'arg1', 'arg2'], stderr=subprocess.STDOUT).decode('utf-8') # 执行shell命令(管道、重定向等),可以使用shlex.quote()将参数双引号引起来result=subprocess.check_output('grep python | wc > out', shell=True).decode('utf-8')
不要重复造轮子,Python称为batteries included即是指Python提供了许多常见问题的解决方案。
import csv# 无header的读写with open(name, 'rt', encoding='utf-8', newline='') as f: # newline=''让Python不将换行统一处理 for row in csv.reader(f): print(row[0], row[1]) # CSV读到的数据都是str类型with open(name, mode='wt') as f: f_csv=csv.writer(f) f_csv.writerow(['symbol', 'change'])# 有header的读写with open(name, mode='rt', newline='') as f: for row in csv.DictReader(f): print(row['symbol'], row['change'])with open(name, mode='wt') as f: header=['symbol', 'change'] f_csv=csv.DictWriter(f, header) f_csv.writeheader() f_csv.writerow({ 'symbol': xx, 'change': xx})
注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决
import syscsv.field_size_limit(sys.maxsize)
csv 还可以读以 分割的数据
f=csv.reader(f, delimiter=' ')
itertools 中定义了很多迭代器工具,例如子序列工具:
import itertoolsitertools.islice(iterable, start=None, stop, step=None)# islice('ABCDEF', 2, None) -> C, D, E, Fitertools.filterfalse(predicate, iterable) # 过滤掉predicate为False的元素# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6itertools.takewhile(predicate, iterable) # 当predicate为False时停止迭代# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4itertools.dropwhile(predicate, iterable) # 当predicate为False时开始迭代# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1itertools.compress(iterable, selectors) # 根据selectors每个元素是True或False进行选择# compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F
序列排序:
sorted(iterable, key=None, reverse=False)itertools.groupby(iterable, key=None) # 按值分组,iterable需要先被排序# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)itertools.permutations(iterable, r=None) # 排列,返回值是Tuple# permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DCitertools.combinations(iterable, r=None) # 组合,返回值是Tupleitertools.combinations_with_replacement(...)# combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD
多个序列合并:
itertools.chain(*iterables) # 多个序列直接拼接# chain('ABC', 'DEF') -> A, B, C, D, E, Fimport heapqheapq.merge(*iterables, key=None, reverse=False) # 多个序列按顺序拼接# merge('ABF', 'CDE') -> A, B, C, D, E, Fzip(*iterables) # 当最短的序列耗尽时停止,结果只能被消耗一次itertools.zip_longest(*iterables, fillvalue=None) # 当最长的序列耗尽时停止,结果只能被消耗一次
计数器可以统计一个可迭代对象中每个元素出现的次数。
import collections# 创建collections.Counter(iterable)# 频次collections.Counter[key] # key出现频次# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素collections.Counter.most_common(n=None)# 插入/更新collections.Counter.update(iterable)counter1 + counter2; counter1 - counter2 # counter加减# 检查两个字符串的组成元素是否相同collections.Counter(list1)==collections.Counter(list2)
当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。
import collectionscollections.defaultdict(type) # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
import collectionscollections.OrderedDict(items=None) # 迭代时保留原始插入顺序
向标准错误输出信息
import syssys.stderr.write('')
输出警告信息
import warningswarnings.warn(message, category=UserWarning) # category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
控制警告消息的输出
$ python -W all # 输出所有警告,等同于设置warnings.simplefilter('always')$ python -W ignore # 忽略所有警告,等同于设置warnings.simplefilter('ignore')$ python -W error # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')
有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:
# 在代码中的debug部分if __debug__: pass
一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:
$ python -0 main.py
使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误
pylint main.py
耗时测试
$ python -m cProfile main.py
测试某代码块耗时
# 代码块耗时定义from contextlib import contextmanagerfrom time import perf_counter@contextmanagerdef timeblock(label): tic=perf_counter() try: yield finally: toc=perf_counter() print('%s : %s' % (label, toc - tic))# 代码块耗时测试with timeblock('counting'): pass
代码耗时优化的一些原则
专注于优化产生性能瓶颈的地方,而不是全部代码。避免使用全局变量。局部变量的查找比全局变量更快,将全局变量的代码定义在函数中运行通常会快 15%-30%。避免使用.访问属性。使用 from module import name 会更快,将频繁访问的类的成员变量 self.member 放入到一个局部变量中。尽量使用内置数据结构。str, list, set, dict 等使用 C 实现,运行起来很快。避免创建没有必要的中间变量,和 copy.deepcopy()。字符串拼接,例如 a + ‘:’ + b + ‘:’ + c 会创造大量无用的中间变量,’:’,join([a, b, c]) 效率会高不少。另外需要考虑字符串拼接是否必要,例如 print(’:’.join([a, b, c])) 效率比 print(a, b, c, sep=’:’) 低。
items = [2, 1, 3, 4]argmin = min(range(len(items)), key=items.__getitem__)
argmax同理。
A=[['a11', 'a12'], ['a21', 'a22'], ['a31', 'a32']]A_transpose=list(zip(*A)) # list of tupleA_transpose=list(list(col) for col in zip(*A)) # list of list
A = [1, 2, 3, 4, 5, 6]# Preferred.list(zip(*[iter(A)] * 2))