幂等性
- 数据库建立唯一性索引,可以保证最终插入数据库的只有一条数据
- token机制,每次接口请求前先获取一个token,然后再下次请求的时候在请求的header体中加上这个token,后台进行验证,如果验证通过删除token,下次请求再次判断token
- 悲观锁或者乐观锁,悲观锁可以保证每次for update的时候其他sql无法update数据(在数据库引擎是innodb的时候,select的条件必须是唯一索引,防止锁全表)
- 先查询后判断,首先通过查询数据库是否存在数据,如果存在证明已经请求过了,直接拒绝该请求,如果没有存在,就证明是第一次进来,直接放行。
封装redis
/**
* redis工具类
*/
@Component
public class RedisService {
@Autowired
private RedisTemplate redisTemplate;
/**
* 写入缓存
* @param key
* @param value
* @return
*/
public boolean set(finalString key, Object value) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.set(key, value);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存设置时效时间
* @param key
* @param value
* @return
*/
public boolean setEx(finalString key, Object value, Long expireTime) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.set(key, value);
redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 判断缓存中是否有对应的value
* @param key
* @return
*/
public boolean exists(finalString key) {
return redisTemplate.hasKey(key);
}
/**
* 读取缓存
* @param key
* @return
*/
public Objectget(finalString key) {
Object result = null;
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
result = operations.get(key);
return result;
}
/**
* 删除对应的value
* @param key
*/
public boolean remove(finalString key) {
if (exists(key)) {
Boolean delete = redisTemplate.delete(key);
return delete;
}
returnfalse;
}
}
注解配置
1、注解
@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface AutoIdempotent {
}
2、token工具类·
@Service
publicclass TokenServiceImpl implements TokenService {
@Autowired
private RedisService redisService;
/**
* 创建token
*
* @return
*/
@Override
public String createToken() {
String str = RandomUtil.randomUUID();
StrBuilder token = new StrBuilder();
try {
token.append(Constant.Redis.TOKEN_PREFIX).append(str);
redisService.setEx(token.toString(), token.toString(),10000L);
boolean notEmpty = StrUtil.isNotEmpty(token.toString());
if (notEmpty) {
return token.toString();
}
}catch (Exception ex){
ex.printStackTrace();
}
returnnull;
}
/**
* 检验token
*
* @param request
* @return
*/
@Override
public boolean checkToken(HttpServletRequest request) throws Exception {
String token = request.getHeader(Constant.TOKEN_NAME);
if (StrUtil.isBlank(token)) {// header中不存在token
token = request.getParameter(Constant.TOKEN_NAME);
if (StrUtil.isBlank(token)) {// parameter中也不存在token
thrownew ServiceException(Constant.ResponseCode.ILLEGAL_ARGUMENT, 100);
}
}
if (!redisService.exists(token)) {
thrownew ServiceException(Constant.ResponseCode.REPETITIVE_OPERATION, 200);
}
boolean remove = redisService.remove(token);
if (!remove) {
thrownew ServiceException(Constant.ResponseCode.REPETITIVE_OPERATION, 200);
}
returntrue;
}
}
拦截器的配置
@Configuration
publicclass WebConfiguration extends WebMvcConfigurerAdapter {
@Resource
private AutoIdempotentInterceptor autoIdempotentInterceptor;
/**
* 添加拦截器
* @param registry
*/
@Override
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(autoIdempotentInterceptor);
super.addInterceptors(registry);
}
}
/**
* 拦截器
*/
@Component
publicclass AutoIdempotentInterceptor implements HandlerInterceptor {
@Autowired
private TokenService tokenService;
/**
* 预处理
*
* @param request
* @param response
* @param handler
* @return
* @throws Exception
*/
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
if (!(handler instanceof HandlerMethod)) {
returntrue;
}
HandlerMethod handlerMethod = (HandlerMethod) handler;
Method method = handlerMethod.getMethod();
//被ApiIdempotment标记的扫描
AutoIdempotent methodAnnotation = method.getAnnotation(AutoIdempotent.class);
if (methodAnnotation != null) {
try {
return tokenService.checkToken(request);// 幂等性校验, 校验通过则放行, 校验失败则抛出异常, 并通过统一异常处理返回友好提示
}catch (Exception ex){
ResultVo failedResult = ResultVo.getFailedResult(101, ex.getMessage());
writeReturnJson(response, JSONUtil.toJsonStr(failedResult));
throw ex;
}
}
//必须返回true,否则会被拦截一切请求
returntrue;
}
@Override
public void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler, ModelAndView modelAndView) throws Exception {
}
@Override
public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
}
/**
* 返回的json值
* @param response
* @param json
* @throws Exception
*/
private void writeReturnJson(HttpServletResponse response, String json) throws Exception{
PrintWriter writer = null;
response.setCharacterEncoding("UTF-8");
response.setContentType("text/html; charset=utf-8");
try {
writer = response.getWriter();
writer.print(json);
} catch (IOException e) {
} finally {
if (writer != null)
writer.close();
}
}
}
高并发下的接口幂等性
1.唯一索引
防止新增脏数据 比如:支付宝的资金账户,支付宝也有用户账户,每个用户只能有一个资金账户,怎么防止给用户创建资金账户多个,那么给资金账户表中的用户ID加唯一索引,所以一个用户新增成功一个资金账户记录
要点: 唯一索引或唯一组合索引来防止新增数据存在脏数据 (当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可)
- token机制,防止页面重复提交
业务要求:
页面的数据只能被点击提交一次
发生原因:由于重复点击或者网络重发,或者nginx重发等情况会导致数据被重复提交
解决办法:集群环境:采用token加redis(redis单线程的,处理需要排队) 单JVM环境:采用token加redis或token加jvm内存
处理流程:
- 数据提交前要向服务的申请token,token放到redis或jvm内存,token有效时间
- 提交后后台校验token,同时删除token,生成新的token返回
.
token特点:
要申请,一次有效性,可以限流
注意:redis要用删除操作来判断token,删除成功代表token校验通过,如果用select+delete来校验token,存在并发问题,不建议使用
- 悲观锁
获取数据的时候加锁获取
select * from table_xxx where id='xxx' for update;
注意:id字段一定是主键或者唯一索引,不然是锁表,会死人的
悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用
- 乐观锁
乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。
乐观锁的实现方式多种多样可以通过version或者其他状态条件:
- 通过版本号实现
update table_xxx set name =#name#,version=version+1 where version=#version#
- 通过条件限制
update tablexxx set avaiamount=avaiamount-#subAmount# where avaiamount-#subAmount# >= 0
注意:乐观锁的更新操作,最好用主键或者唯一索引来更新,这样是行锁,否则更新时会锁表,上面两个sql改成下面的两个更好
update tablexxx set name=#name#,version=version+1 where id=#id# and version=#version#update t
- 分布式锁
还是拿插入数据的例子,如果是分布是系统,构建全局唯一索引比较困难,例如唯一性的字段没法确定
这时候可以引入分布式锁,通过第三方的系统(redis或zookeeper),在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁
这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。
要点:某个长流程处理过程要求不能并发执行,可以在流程执行之前根据某个标志(用户ID+后缀等)获取分布式锁,其他流程执行时获取锁就会失败,也就是同一时间该流程只能有一个能执行成功,执行完成后,释放分布式锁(分布式锁要第三方系统提供)
- 对外提供接口的api如何保证幂等
如银联提供的付款接口:需要接入商户提交付款请求时附带:source来源,seq序列号
source+seq在数据库里面做唯一索引,防止多次付款,(并发时,只能处理一个请求)
重点 对外提供接口为了支持幂等调用,接口有两个字段必须传,一个是来源source,一个是来源方序列号seq,这个两个字段在提供方系统里面做联合唯一索引