在 Python 编程中,错误日志(Error Logging)是调试和维护程序的重要手段。当代码发生异常时,记录日志可以帮助我们快速定位问题,避免程序直接崩溃。Python 内置的 logging 模块提供了强大的日志记录功能,可以方便地记录错误信息,并输出到控制台、文件、远程服务器等多个目标。本文将介绍 logging 模块的基本用法,并深入探讨如何使用 logging 记录错误信息,包括日志级别、日志格式、文件存储和异常日志捕获等。
1. 为什么要使用 logging 记录错误?
相较于 print(),使用 logging 记录错误有以下优势:
✅ 更灵活 —— 可以控制日志级别(DEBUG、INFO、WARNING、ERROR、CRITICAL)。
✅ 更持久 —— 日志可以写入文件,方便以后分析错误。
✅ 更专业 —— 支持日志格式化、时间戳、多线程、多进程等功能。
✅ 更高效 —— 可以根据日志级别进行筛选,避免无用信息干扰。
示例:
import logging
# 设置日志级别和格式
logging.basicConfig(level=logging.ERROR, format="%(asctime)s - %(levelname)s - %(message)s")
# 记录错误
logging.error("发生错误: 数据库连接失败")
输出示例(带时间戳):
2024-02-04 12:30:15,678 - ERROR - 发生错误: 数据库连接失败
2. logging 模块的基本概念
Python logging 模块提供了多个日志级别,每个级别代表不同的严重程度:
| 级别(Level) | 数值 | 说明 |
|---|---|---|
DEBUG |
10 | 调试信息,最详细 |
INFO |
20 | 普通信息,如程序运行状态 |
WARNING |
30 | 警告信息,表示可能会有问题 |
ERROR |
40 | 错误信息,代码执行失败 |
CRITICAL |
50 | 严重错误,可能导致程序终止 |

最低0.47元/天 解锁文章
17万+

被折叠的 条评论
为什么被折叠?



