TensorFlow 学习笔记1 —— 安装

标签: tensorflow mac
13人阅读 评论(0) 收藏 举报
分类:

今天大概看一下如何搭建 TensorFlow 的开发环境,当前的工作平台是 Mac OS X 10.13.2 :

资料主要来源于 TensorFlow 官网

安装方式选择

官方提供了一下几种安装方式:

  • Virtualenv (虚拟环境)

  • "native" pip(原生环境使用 pip 工具安装)

  • Docker (使用 docker 容器)

  • installing from sources, which is documented in a separate guide. (使用源码)

官方推荐使用第一种方式,即 Virtualenv ,是一个虚拟 Python 环境,这种方式的好处就是避免 pip 直接安装对原本 Python 环境造成干扰。

关于 virtualenv 的优点,可以参考:Python开发必备神器之一:virtualenv

安装步骤

接下来我们就开始使用 Virtualenv 的方式来安装 TensorFlow :

  • 使用终端安装 pip 和 virtualenv :

    $ sudo easy_install pip
    $ sudo pip install --upgrade virtualenv

    OS X 系统一般默认安装了 Python ,可以在终端中输入 python --version 查询当前版本:

    $ python --version
    Python 2.7.10

    刚开始安装 pip 时我开着 Shadowsocks ,结果 sudo easy install pip 卡在 Reading https://pypi.python.org/simple/pip/ 就没动静了,将其关掉再安装就正常。

    安装 virtualenv 时提示:

    Using cached virtualenv-15.2.0-py2.py3-none-any.whl
    matplotlib 1.3.1 requires nose, which is not installed.
    matplotlib 1.3.1 requires tornado, which is not installed.
    Installing collected packages: virtualenv

    加上 sudo 之后才正常,看到如下日志表示安装成功:

    $ sudo pip install virtualenv
    Password:
    Collecting virtualenv
      Downloading virtualenv-15.2.0-py2.py3-none-any.whl (2.6MB)
        100% |████████████████████████████████| 2.6MB 45kB/s 
    matplotlib 1.3.1 requires nose, which is not installed.
    matplotlib 1.3.1 requires tornado, which is not installed.
    Installing collected packages: virtualenv
    Successfully installed virtualenv-15.2.0
    $ virtualenv --version
    15.2.0

    能查询到版本信息才表示安装成功。

  • 创建 Virtualenv 环境:

    $ virtualenv --system-site-packages 虚拟环境根目录(目录名不可带空格)

    这里创建的虚拟环境仅用于 TensforFlow 的开发,可以直接用其来命名,例如:

    $ virtualenv --system-site-packages ~/Desktop/mechineLearning/TensorFlow/Virtualenv/
    New python executable in /Users/linshuhe/Desktop/mechineLearning/TensorFlow/Virtualenv/bin/python
    Installing setuptools, pip, wheel...done.

    执行成功会在指定的目录下生成如下文件:lib 、bin 、include 和 pip-selfcheck.json 。即复制了一份本地的 Python 环境到一个独立的目录下,从而实现环境隔离的目的。

    目录或父目录带空格的话,在虚拟环境中访问 pip 会报错:bad interpreter: No such file or directory。

  • 删除虚拟环境,确保是在虚拟环境非激活状态下,直接将要删除的虚拟环境所在的目录删除即可:

    $ rm -r 虚拟环境根目录 

  • 激活上一步创建的虚拟环境:

    $ cd 虚拟环境根目录
    $ source ./bin/active

    激活成功的话,便会进入到虚拟环境的命令状态,指令目录会发生变化,会出现当前虚拟环境的名称(与创建虚拟环境包的目录名一致):

    linshuhes-MacBook-Pro:Virtualenv linshuhe$ source ./bin/activate
    (Virtualenv) linshuhes-MacBook-Pro:Virtualenv linshuhe$ 

    确保虚拟环境中的 pip 版本高于 8.1,低于此版本的可以使用指令 easy_install -U pip 来更新。退出当前虚拟环境的指令:deactivate

  • 安装 TensorFlow :

    pip install --upgrade tensorflow

    这个过程会安装许多工具插件,需要等待一定时间。知道看到如下输出表示安装成功:

    Successfully installed absl-py-0.1.13 astor-0.6.2 backports.weakref-1.0.post1 bleach-1.5.0 enum34-1.1.6 funcsigs-1.0.2 futures-3.2.0 gast-0.2.0 grpcio-1.11.0 html5lib-0.9999999 markdown-2.6.11 mock-2.0.0 numpy-1.14.2 pbr-4.0.2 protobuf-3.5.2.post1 six-1.11.0 tensorboard-1.7.0 tensorflow-1.7.0 termcolor-1.1.0 werkzeug-0.14.1

    这里显示所有安装的工具插件。

    卸载也很简单:

    pip uninstall tensorflow

    此外,这里安装的 tensorflow 是一个工具库,不能在命令行中直接通过 tensorflow --version 查询其版本信息。但可以通过 Python 语句来查询:

    $ python
    Python 2.7.10 (default, Jul 15 2017, 17:16:57) 
    [GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import tensorflow as tf
    >>> tf.__version__  # 查询版本号
    '1.7.0'
    >>> tf.__path__     # 查询安装路径
    ['/Users/linshuhe/Desktop/mechineLearning/TensorFlow/Virtualenv/lib/python2.7/site-packages/tensorflow']
    >>> 

    如此,表示 tensorflow 安装完成。

测试 Demo

就以上面查询版本号的例子,直接编写一个 Python 脚本名称为 TestTFVersion.py 内容如下:

import tensorflow as tf
print "current tf version: ",tf.__version__
print "tf install path: ",tf.__path__

然后在 Tensorflow 安装的虚拟环境激活的状态下执行测试脚本:

$ python TestTFVersion.py
current tf version:  1.7.0
tf install path:  ['/Users/linshuhe/Desktop/mechineLearning/TensorFlow/Virtualenv/lib/python2.7/site-packages/tensorflow']

其他

常见的安装问题解决可以查询:Common installation problems

参考

查看评论

深度学习笔记——TensorFlow学习笔记(一)入门

本文只是在学习TensorFlow前期的一些入门知识总结,并结合一个用TensorFlow实现神经网络的例子来进一步加深对TensorFlow的理解。...
  • mpk_no1
  • mpk_no1
  • 2017-06-02 22:54:11
  • 2068

TensorFlow学习笔记(1)对多层卷积网络识别MNIST(MNIST进阶)的理解

这几天在学TensorFlow,从mnist开始,有不少迷惑的地方,先把理解记下来
  • dong_W_
  • dong_W_
  • 2017-12-20 21:22:24
  • 142

TensorFlow学习笔记(一)入门

TensorFlow是什么? 是谷歌开源的机器学习实现框架,本文从Python语言来理解学习Tensorflow以及机器学习的知识。 TensorFlow的API主要分两个层次,核心层和基于核心层的高...
  • WuyZhen_CSDN
  • WuyZhen_CSDN
  • 2017-03-21 21:32:07
  • 8442

Tensorflow深度学习笔记(七)-Tensorboard应用

tensorboard可以以图形的方式观察训练过程,直观的显示训练情况。下面采用之前的代码,再加上tensorboard相关代码。# coding: utf-8 import tensorflow a...
  • juyin2015
  • juyin2015
  • 2017-12-04 21:43:49
  • 134

TensorFlow学习笔记(一)——Win10下安装与配置CPU运行的TensorFlow

win10下CPU运行的TensorFlow的安装配置
  • u011159042
  • u011159042
  • 2017-03-29 15:05:54
  • 10101

TensorFlow学习笔记之源码分析(1)----最近算法nearest_neighbor

import numpy as np import tensorflow as tf # Import MINST data import input_data mnist = input_data...
  • daydayup_668819
  • daydayup_668819
  • 2017-02-21 15:41:59
  • 781

TensorFlow学习笔记11——《面向机器智能的tensorflow实践》第5.5节Stanford Dogs例程实现

《面向机器智能的tensorflow实践》书中第5.5节的Stanford Dogs例程是入门TensorFlow的良好范例。但该书及其github中均没有提供完整代码,并且书中的部分代码因Tenso...
  • hnxyxiaomeng
  • hnxyxiaomeng
  • 2017-11-13 09:56:10
  • 1365

TensorFlow学习笔记之二——安装和运行

通过阅读TensorFlow的论文和相关博文之后,接下来,对TensorFlow进行一个简单的初步运行。1、安装了Ubuntu 16.04.(ubuntu-16.04-desktop-amd64.is...
  • snsn1984
  • snsn1984
  • 2016-05-09 13:48:09
  • 13199

[深度学习]tensorflow模块安装与测试

安装第一步:安装pip npm install pip第2步:安装命令 pip install https://storage.googleapis.com/tensorflow/mac/ten...
  • BaiHuaXiu123
  • BaiHuaXiu123
  • 2017-09-01 10:00:09
  • 2131

TensorFlow学习笔记13----TensorFlow Serving

原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。TensorFlow Serving——这一部分最后再来看。先放着。1、介绍tensorflow服务器对于机器学习模型来说,是...
  • liuxiao214
  • liuxiao214
  • 2017-07-06 16:34:38
  • 2645
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 59万+
    积分: 7117
    排名: 3979
    博客专栏
    最新评论