最新消息!CB官网正式宣布:新增科目AP Precalculus预备微积分。
这一门课程将于2023年秋季推出,2024年加入到AP大考中!
预备微积分是什么?
Precalculus预备微积分,可以理解为微积分的前置课程。课程的目标是通过帮助学生将之前所学的代数和几何知识联系起来,使学生掌握更严谨的数学概念和技能。包括基础函数模型,函数建模动态的现象等知识点。
它不仅是很多国际学校的“必修课”,直接影响大家的GPA,也可以帮助大家提高SAT、ACT成绩,打好数学竞赛的基础。
预备微积分适宜学习人群
如果你是:
- 想未来在AP预备微积分大考中拿到5分!
- 希望提高校内预备微积分课程的GPA,成绩目标A或A+
- 想打牢基础,衔接AP微积分学习
- 不清楚自己在微积分方面的学习能力,想提前了解微积分课程学习难度
- 提升数学竞赛能力,开启数理竞赛之路
那么你现在就可以开始准备AP预备微积分的学习啦!
为何开设AP Precalculus?
根据CB的官方数据统计,有超过一半的公立两年制大学学生和近三分之一的公立四年制大学学生被分配到数学补习课程,其中超过40%的学生未能完成补习课程。
为了帮助更多高中生夯实数学能力,为大学的数学学习打下更好的基础,CB考虑开设AP Precalculus课程,即“微积分预备”,帮助学生提高数学能力,以便之后可以顺利衔接大学数学的学习。
而这门课程的开设具体可以分为下面4个目的:
- 准备:为学生能够更好学习大学数学提供准备
- 鼓励:鼓励更多学生在高中完成四年的数学学习
- 培养:培养并帮助想要就读STEM的学生完成目标
- 技能:让学生具备完成大学学业要求所需的数学技能
Precalculus课程大纲
与常见的教材11-13个章节不同,微积分预备课程主要包含4个单元的内容,每个单元都是以某一种特定的函数形式为主线,学习各个函数的主要性质以及数据模拟的形式。
四个单元内容分别如下:
Unit1:Polynomial and Rational Functions 多项式与有理函数
Unit2:Exponential and Logarithmic Functions 指数与对数函数
Unit3:Trigonometirc and Polar Functions三角函数与极函数
Unit4:Functions Involving Parameters,Vectors,and Matrices参数、向量与矩阵
同时,每个单元都是后续正式的微积分科目的重要基础,掌握好这些知识点对于后续的微积分学习会有非常大的帮助。
以上的单元涵盖了美高经典预备微积分教材中的主要内容。
但有意思的是,CB革新了几个知识点的学习顺序,比如第二章是从等差和等比数列引入,从函数的角度对两种数列进行研究,类比出一次函数和指数函数的模型。
与大部分教材中将数列和级数单独成章的做法相比,我更认同本考纲中的内容安排。因为很多学生在学习(预备)微积分的过程中,都很难将“数列与级数”与其他知识点建立联系。
类似的调整在第三章与第四章都有出现,可见CB本次针对过往学生在AP微积分考试中的表现,以及学校老师和学生的教学反馈,确实在新考纲的编排中做出了一些革新,至于具体的效果和反馈,就让我们拭目以待吧。
Precalculus考试形式
题目分类
针对这门课程,CB采取的考试形式与AP Calculus微积分比较类似。分为Multiple Choice Question 选择题和Free Response Question 简答题两个部分。时间方面,总共3个小时,相比于微积分考试少15分钟。
MCQ选择题一共48题,分数占比50%,时长共80minutes,Part A不支持使用计算器。Part B支持使用计算器,分数占比16.6%,时长40minutes。
FRQ简答题共4题,Part A支持使用计算器,Part B不支持使用计算器。分数占比均为16.6%,时长均为30minutes。
其实,我们不难发现,如果想要稳稳拿到五分,关键还是在于前36道无法使用计算器的选择题,CB仍旧还是非常重视考生的运算能力。
AP数学类课程学习路径
目前AP考试中数学课程包含微积分预备、微积分AB、微积分BC和统计学等。数学科目基本是每位同学的必考科目,重要性不言而喻!
那么考生应该按照怎样的顺序来学习AP数学类课程?CB官方也贴心地为同学们提供了明确的数学科目学习路径的建议。
官方表示,假设学生学习「Algebra 1 代数1」为第1年,可以将整个学习周期划分为4-5年,循序渐进的完成。
根据官网的建议,考生们可以参考如下的学习安排:
Year 1:
学习代数1
Year 2:
数学基础较好的可以同时几何+ 代数2
Year 3:
学习预备微积分
Year 4:
规划后续微积分AB、微积分BC、统计的学习
总结以上的信息,Precalculus(微积分预备课程)涉及许多大学代数拓展出来的概念,帮助学生在数学学习的过程中做好过渡,打好基础,以便之后能够更好掌握大学的数学知识。