Probabilistic Graphical Models 4 Structured CPDs ==================Overview: Structured CPDs============1.缺点:当父节点多时(k个),整个表有2^k这么多项!2.有好多其他可选择的方法3.条件相互独立性4.小例子================Tree-Structured CPDs================1.注意:中间节
Stanford机器学习---第十六讲. PHOTO ORC ===========Problem Description and Pipeline ==========================Sliding Windows===============瘦点排除=============Getting Lots of D
Probabilistic Graphical Models 3 Template Models ===============Template Models===============================DBN==============================hmm=========================
Probabilistic Graphical Models 2 Bayesian Network Fundamentals ================Semantics & Factorization============1.第一个简单贝叶斯网络==============Reasoning Patterns=================
Probabilistic Graphical Models 1 简介 ============Overview and Motivation============1.用图论+概率来解决2.应用=============Distributions=========================================Factors
Stanford机器学习---第十五讲. 大规模机器学习 ============Learning With Large Datasets============1.数据为王2.当M 很大时,梯度下降每一步的代价都很大。若为左图,再添加更多数据没问题,但若为右图,则若想添加更多特征,先考虑增加更多隐含层(神经网络)或增加更多特征,来解决HIGH BIAS问题。==============Stochastic Gra
Stanford机器学习---第十四讲. 推荐系统 ===============Problem Formulation================1.推荐系统自动学习哪些特征是重要的。对下图来说,是推测出打?号(没看过)的该得多少分。注意:是对特定的用户推荐。特定的用户有特定的爱好。 =================Content Based Recommendations======================
神经网络6--离散Hopfield神经网络 % ------------------------standard number array-----------------------one=[-1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1;... -1 -1 -1 -1 1 1 -1 -1 -1 -1; -1 -1 -1 -1 1 1 -1 -1 -1 -1;.
Stanford机器学习---第十三讲. 异常检测---此讲综合应用了所有以往知识 =============问题描述================================高斯分布=================================检测算法=================================具体实现=====用评估算法来确定参数的选择=========
Stanford机器学习---第十二讲. 数据降维 ===============Motivation I: Data Compression=================1.降维后,需要的数据存储量大大减少。内存、硬盘空间,程序速度优化。=================MotivationII: Visualization======1.可视化一般降到2或3维===主成分分析Princ