linuxcumt1的专栏

私信 关注
linuxcumt1
码龄8年
  • 5,677
    被访问量
  • 12
    原创文章
  • 396,002
    作者排名
  • 9
    粉丝数量
  • 于 2013-02-16 加入CSDN
获得成就
  • 获得1次点赞
  • 内容获得1次评论
  • 获得2次收藏
荣誉勋章
TA的专栏
  • 机器学习
    9篇
  • 神经网络
    2篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Probabilistic Graphical Models 4 Structured CPDs

==================Overview: Structured CPDs============1.缺点:当父节点多时(k个),整个表有2^k这么多项!2.有好多其他可选择的方法3.条件相互独立性4.小例子================Tree-Structured CPDs================1.注意:中间节
原创
319阅读
0评论
0点赞
发布博客于 8 年前

Stanford机器学习---第十六讲. PHOTO ORC

===========Problem Description and Pipeline ==========================Sliding Windows===============瘦点排除=============Getting Lots of D
原创
316阅读
0评论
0点赞
发布博客于 8 年前

Probabilistic Graphical Models 3 Template Models

===============Template Models===============================DBN==============================hmm=========================
原创
265阅读
0评论
0点赞
发布博客于 8 年前

Probabilistic Graphical Models 2 Bayesian Network Fundamentals

================Semantics & Factorization============1.第一个简单贝叶斯网络==============Reasoning Patterns=================
原创
346阅读
0评论
0点赞
发布博客于 8 年前

Probabilistic Graphical Models 1 简介

============Overview and Motivation============1.用图论+概率来解决2.应用=============Distributions=========================================Factors
原创
751阅读
0评论
0点赞
发布博客于 8 年前

Stanford机器学习---第十五讲. 大规模机器学习

============Learning With Large Datasets============1.数据为王2.当M 很大时,梯度下降每一步的代价都很大。若为左图,再添加更多数据没问题,但若为右图,则若想添加更多特征,先考虑增加更多隐含层(神经网络)或增加更多特征,来解决HIGH BIAS问题。==============Stochastic Gra
原创
391阅读
0评论
0点赞
发布博客于 8 年前

Stanford机器学习---第十四讲. 推荐系统

===============Problem Formulation================1.推荐系统自动学习哪些特征是重要的。对下图来说,是推测出打?号(没看过)的该得多少分。注意:是对特定的用户推荐。特定的用户有特定的爱好。 =================Content Based Recommendations======================
原创
582阅读
0评论
0点赞
发布博客于 8 年前

神经网络6--离散Hopfield神经网络

% ------------------------standard number array-----------------------one=[-1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1;... -1 -1 -1 -1 1 1 -1 -1 -1 -1; -1 -1 -1 -1 1 1 -1 -1 -1 -1;.
原创
689阅读
0评论
1点赞
发布博客于 8 年前

神经网络5--som

原创
396阅读
0评论
0点赞
发布博客于 8 年前

Stanford机器学习---第十三讲. 异常检测---此讲综合应用了所有以往知识

=============问题描述================================高斯分布=================================检测算法=================================具体实现=====用评估算法来确定参数的选择=========
原创
640阅读
0评论
0点赞
发布博客于 8 年前

Stanford机器学习---第十二讲. 数据降维

===============Motivation I: Data Compression=================1.降维后,需要的数据存储量大大减少。内存、硬盘空间,程序速度优化。=================MotivationII: Visualization======1.可视化一般降到2或3维===主成分分析Princ
原创
578阅读
1评论
0点赞
发布博客于 8 年前

旧笔记-----http://blog.csdn.net/linuxcumt

博客空间问题,新笔记移到http://blog.csdn.net/linuxcumt1
原创
213阅读
0评论
0点赞
发布博客于 8 年前