Probabilistic Graphical Models 4 Structured CPDs

==================Overview: Structured CPDs============

1.缺点:当父节点多时(k个),整个表有2^k这么多项!


2.有好多其他可选择的方法


3.条件相互独立性


4.小例子


================Tree-Structured CPDs================

1.注意:中间节点代表考虑该因素。


2.注意看路径想独立性


3.选择推荐信下的树


4.微软用贝叶斯网络找打印机错误


=============Independence of Causal Influence=============

1.当有多个父亲节点时,TREE CPD也不给力!


2.使用NOISY OR CPD解决多父亲问题。引入中间变量Z,表示X对Y的影响程度。


3.多了层节点,多了层逻辑关系


4.SIGMOID CPD,注意概率在0--1之间


5.一个医疗诊断系统的图例,就用上图的方法



=================Continuous Variables =====================

1.条件线性高斯。温度不是确定的。满足高斯分布。而SOON温度与NOW温度、OUTSIDE和DOOR的

开关有关系。也满足“组合”高斯分布。在DOOR的条件下,又称为条件线性高斯。


2.线性高斯的具体定义。分布的MEAN是线性函数。偏差固定。


3.条件线性高斯,其Y的分布在离散变量A的控制下。


4.机器位置模型。机器人的下一位置是有偏差的。偏差会越来越大。











相关推荐
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页