目录
Metadata Database在Airflow中的重要性体现在哪里?
BashOperator与PythonOperator有何不同?
如何使用Prometheus和Grafana与Airflow集成进行监控?
解释如何将Airflow与其他数据处理系统(如Hadoop、Spark)集成。
描述Airflow的架构设计及其主要组件
Apache Airflow是一个开源的工作流调度系统,它允许用户编排复杂的工作流程,使用Python编写工作流程定义,并管理任务之间的依赖关系。Airflow的架构设计采用主从模式,主要包括以下几个核心组件:
-
Scheduler:负责解析DAG(Directed Acyclic Graph,有向无环图)定义的文件,根据定义的调度周期(schedule interval)触发相应的任务(Task)实例。
-
Web Server:提供了一个用户界面,用户可以通过它查看DAG的运行状态、任务历史、执行日志以及监控仪表板等信息。
-
Worker:负责执行Scheduler触发的任务。Worker通过Executor与任务进行交互,Executor负责任务的异步调度。
-
Metadata Database:存储所有DAG、任务(Task)、任务实例(TaskInstance)等元数据,用于记录任务的状态、执行时间等信息,是Airflow中协调调度和状态追踪的核心。
-
Backend Storage:通常是一个数据库,