- 📌 元数据概览:
- 标题:这篇论文的标题是 “TextSquare: Scaling up Text-Centric Visual Instruction Tuning”,它可能讨论的是如何通过大规模的文本中心的视觉指令调整来提升多模态大型语言模型(MLLMs)的性能。
- 作者:作者是来自字节跳动(ByteDance)、华东师范大学(East China Normal University)和华中科技大学(Huazhong University of Science and Technology)的研究人员。他们的背景可能涉及计算机视觉、自然语言处理和人工智能。
- 链接:论文的具体网址是 https://arxiv.org/pdf/2404.12803.pdf,这个链接指向了论文在arXiv上的预印本。
- 标签:论文的关键词或标签可能包括视觉问题回答(VQA)、多模态大型语言模型(MLLMs)、指令调整、数据集构建等。





- ✨ 核心观点与亮点:
- 主张:论文提出了一种新方法,通过使用闭源的MLLMs生成大规模、高质量的指令调整数据集(Square-10M),来提升文本中心的视觉问题回答(VQA)的性能。
- 亮点:文章的创新之处在于提出了一个四步数据构建过程(Square),包括自我提问、回答、推理和评估,这有助于生成高质量的VQA数据,并且显著提高了模型性能和减少了幻觉(hallucinations)。
- 核心贡献:论文的核心贡献是构建了Square-10M数据集,并通过该数据集训练的模型TextSquare在多个基准测试中取得了优异的性能,甚至在一些基准测试中超过了封闭源模型GPT4V和Gemini。
- Motivation:论文的动机是解决开源模型与领先闭源模型之间的性能差距,这一差距部分是由于缺乏大规模、高质量的指令调整数据。
- 📚 论文的核心内容,模型结构,关键术语/概念:
- 核心内容:论文提出了一个名为TextSquare的模型,它通过在大规模数据集Square-10M上进行指令调整来提高文本中心的VQA性能。Square-10M是通过一个四步过程生成的,包括自我提问、回答、推理和评估。
- 模型结构详述:TextSquare模型遵循了InternLM-Xcomposer2的架构,包括视觉编码器、基于InternLM-2的大型语言模型和投影器三个主要组件。模型通过监督式微调(SFT)在Square-10M数据集上进行训练。
- 🌟 实验结果:
- 核心实验结果:TextSquare在OCRBench数据集上达到了62.2%的准确率,这一结果在多个文本中心的VQA基准测试中设定了新的标准,并且在10个文本中心的基准测试中有6个超过了GPT4V和Gemini模型。
- 消融实验:论文进行了消融实验来验证Square-10M数据集对指令调整的有效性,以及Square策略中评估步骤对提高VQA数据质量的影响。实验结果表明,使用Square-10M进行指令调整可以显著提高模型在各种基准测试中的性能。
- 🔄 总结归纳:
- 综合以上内容,这篇论文提出了一个创新的方法来生成大规模、高质量的VQA指令调整数据集,并通过该数据集训练的TextSquare模型在多个基准测试中取得了优异的性能。这项工作不仅为开源模型提供了一个追赶闭源模型的途径,也为未来如何进一步提升数据量和质量提供了有价值的见解。
- 相关工作:与这篇论文相关的核心论文可能包括GPT-4、Gemini、CLIP、Flamingo等多模态大型语言模型的研究。
- ❓引发思考的问题:
- 如何进一步改进Square策略以生成更高质量的数据?
- TextSquare模型在处理非文本中心的VQA任务时表现如何?
- 在资源有限的情况下,如何平衡大规模数据训练的开销和模型性能的提升?
- 除了减少幻觉,VQA推理数据在提高模型可信度方面还有哪些潜在的应用?
- 如何将TextSquare模型扩展到更多的语言和跨文化场景中?
研究人员提出TextSquare模型,通过大规模数据集Square-10M的指令调整,提升VQA性能。模型在OCRBench达到62.2%准确率,超过GPT4V和Gemini。论文关注于缩小开源与闭源模型的性能差距并优化数据质量。
874

被折叠的 条评论
为什么被折叠?



