文章目录
记录一下笔者收集的一些资料,不喜勿喷。
Anaconda介绍
Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。
参考:https://blog.csdn.net/taoqick/article/details/56284364
下载Anaconda
清华大学anaconda镜像下载地址:
 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
选择一个合适的版本进行下载,笔者选择的是:
Anaconda3-2022.05-Windows-x86_64.exe
安装Anaconda
一路安装成功之后。打开Anaconda Powershell Prompt (anaconda3)。查看下Python版本(默认base环境):
(base) PS C:\Users\admin> python -V
Python 3.9.12
说明安装成功
换源
替换软件包的安装源,俗称“换源”。
执行conda config,参考:
https://blog.csdn.net/qq_41946216/article/details/129478882
https://zhuanlan.zhihu.com/p/459601766
会在当前系统用户的家目录下(比如admin用户就是C:\Users\admin),创建一个.condarc文件。
为了提升依赖包的安装速度,需要讲配置文件内容修改为:
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
show_channel_urls: true
.condarc配置文件修改保存后,打开一个Anaconda Prompt,通过conda config --show-sources命令,可查看当前的配置:
(base) PS C:\Users\admin> conda config --show-sources
==> C:\Users\admin\.condarc <==
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
show_channel_urls: True
创建一个新环境
打开Anaconda Prompt,在控制台使用conda命令。
比如基于Python3.8.10,创建一个test环境:
conda create -n test python=3.8.10
切换到新建的test环境:
conda activate test
新环境下,用pip命令安装一个numpy包:
conda install numpy==1.21.6 -i https://pypi.tuna.tsinghua.edu.cn/simple
其中-i https://pypi.tuna.tsinghua.edu.cn/simple是要用国内清华大学的镜像源来安装。否则从国外下载可能会失败。
同理可以安装需要的其他软件包。
永久换源
永久设置pip命令从清华源安装软件包:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
执行后,会创建一个pip.ini文件,文件内容如下:
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
trusted-host = mirrors.aliyun.com
pip常用命令
pip install -r requirements.txt
# 从github安装
pip install git+https://github.com/mlech26l/keras-ncp.git
conda常用命令
conda info --envs 查看各个环境所在的位置
 conda list:查看环境中的所有包
 conda install XXX:安装 XXX 包
 conda remove XXX:删除 XXX 包
 conda env list:列出所有环境
 conda create -n XXX:创建名为 XXX 的环境
 conda create -n env_name jupyter notebook :创建虚拟环境
 conda activate noti(或 source activate noti):启用/激活环境
 conda env remove -n noti:删除指定环境
 deactivate(或 source deactivate):退出环境
 jupyter notebook :打开Jupyter Notebook
 conda config --remove-key channels :换回默认源
VSCode环境配置
让VSCode使用conda创建的环境:
- 打开VS Code,打开你的项目文件夹。
- 按下快捷键Shift+Ctrl+P打开命令面板,输入“Python”,选择“Python: Select Interpreter”。
- 在弹出的列表中选择你刚刚创建的Conda环境。VS Code会自动在项目文件夹下创建一个.conda文件夹来存放环境信息。
参考
CUDA 和 cuDNN
CUDA下载:
 https://developer.nvidia.com/cuda-toolkit-archive
 cuDNN下载:
 https://developer.nvidia.com/rdp/cudnn-archive
 https://docs.nvidia.com/deeplearning/cudnn/latest/
 https://docs.nvidia.com/deeplearning/cudnn/installation/latest/windows.html
安装教程,参考:
 https://blog.csdn.net/weixin_44779079/article/details/141528972
 https://zhuanlan.zhihu.com/p/32400431090
Pytorch
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
Carla模拟环境学习视频
https://www.bilibili.com/video/BV17Q4y1K7Rq/
 
                   
                   
                   
                   
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   8087
					8087
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            