排序算法
维基百科,自由的百科全书
在计算机科学 与数学 中,一个排序算法 是一种能将一串资料依照特定排序方式的一种算法 。最常用到的排序方式是数值顺序以及字典顺序 。有效的排序算法在一些算法(例如搜寻算法 与合并算法 )中是重要的,如此这些算法才能得到正确解答。排序算法也用在处理文字资料以及产生人类可读的输出结果。基本上,排序算法的输出必须遵守下列两个原则:
- 输出结果为递增序列 (递增是针对所需的排序顺序而言)
- 输出结果是原输入的一种排列 、或是重组
虽然排序算法是一个简单的问题,但是从计算机科学发展以来,已经有大量的研究在此问题上。举例而言,气泡排序 在1956年就已经被研究。虽然大部分人认为这是一个已经被解决的问题,有用的新算法仍在不断的被发明。(例子:图书馆排序 在2004年被发表)
目录[隐藏 ] |
[编辑 ] 分类
在计算机科学 所使用的排序算法通常被分类为:
- 计算的复杂度 (最差 、平均 、和最好 表现),依据串行(list)的大小(n )。一般而言,好的表现是O (n log n ),且坏的行为是Ω(n 2 )。对于一个排序理想的表现是O (n )。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n )。
- 内存使用量(以及其他电脑资源的使用)
- 稳定度:稳定排序算法 会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定 的,就是当有两个有相等关键的纪录R 和S ,且在原本的串行中R 出现在S 之前,在排序过的串行中R 也将会是在S 之前。
- 一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (維持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改變)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实作为稳定。作这件事情的一个 方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序 通常牵涉到额外的空间负担。
[编辑 ] 排列算法列表
在这个表格中,n 是要被排序的纪录数量以及k 是不同键值的数量。
[编辑 ] 稳定的
- 冒泡排序 (bubble sort) — O(n 2 )
- 鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n 2 )
- 插入排序 (insertion sort)— O(n 2 )
- 桶排序 (bucket sort)— O(n ); 需要 O(k ) 额外空间
- 计数排序 (counting sort) — O(n +k ); 需要 O(n +k ) 额外空间
- 合并排序 (merge sort)— O(n log n ); 需要 O(n ) 额外空间
- 原地合并排序 — O(n 2 )
- 二叉排序树 排序 (Binary tree sort) — O(n log n )期望时间; O(n 2 )最坏时间; 需要 O(n ) 额外空间
- 鸽巢排序 (Pigeonhole sort) — O(n +k ); 需要 O(k ) 额外空间
- 基数排序 (radix sort)— O(n ·k ); 需要 O(n ) 额外空间
- Gnome sort — O(n 2 )
- Library sort — O(n log n ) with high probability, 需要 (1+ε)n 额外空间
[编辑 ] 不稳定
- 选择排序 (selection sort)— O(n 2 )
- 希尔排序 (shell sort)— O(n log n ) 如果使用最佳的现在版本
- Comb sort — O(n log n )
- 堆排序 (heapsort)— O(n log n )
- Smoothsort — O(n log n )
- 快速排序 (quicksort)— O(n log n ) 期望时间, O(n 2 ) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
- Introsort — O(n log n )
- Patience sorting — O(n log n + k ) 最坏情况时间,需要 额外的 O(n + k ) 空间,也需要找到最长的递增子序列 (longest increasing subsequence)
[编辑 ] 不实用的排序算法
- Bogo排序 — O(n × n !) 期望时间,无穷的最坏情况。
- Stupid sort — O(n 3 ); 递回版本需要 O(n 2 ) 额外内存
- Bead sort — O(n ) or O(√n ), 但需要特别的硬件
- Pancake sorting — O(n ), 但需要特别的硬件
[编辑 ] 排序的算法
排序的算法 有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序 和冒泡排序 又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
[编辑 ] 插入排序
插入排序 是这样实现的:
- 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
- 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
- 重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。 它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
[编辑 ] 冒泡排序
冒泡排序 是这样实现的:
- 首先将所有待排序的数字放入工作列表中。
- 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
- 重复2号步骤(倒数的数字加1。例如:第一次到倒数第二个数字,第二次到倒数第三个数字,依此类推...),直至再也不能交换。
冒泡排序 的平均时间复杂度 与插入排序相同,也是平方级的,但也是非常容易实现的算法。
[编辑 ] 选择排序
选择排序 是这样实现的:
- 设数组内存放了n个待排数字,数组下标从1开始,到n结束。
- i=1
- 从数组的第i个元素开始到第n个元素,寻找最小的元素。(具体过程为:先设arr[i]为最小,逐一比较,若遇到比之小的则交换 )
- 将上一步找到的最小元素和第i位元素交换。
- 如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n2 )的。
[编辑 ] 快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序 是所有排序算法中最高效的一种。它采用了分治 的 思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排 序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后 半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
[编辑 ] 堆排序
堆排序 与前面的算法都不同,它是这样的:
- 首先新建一个空列表,作用与插入排序 中的"有序列表"相同。
- 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
- 重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为n logn ,效率高(因为有堆 这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn 的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度 差了一个数量级,一个是平方级的,一个是对数级的。
[编辑 ] 外部排序
外部排序指的是大文件的排序,即待排序的记录存储在外存储器上,待排序的文件无法一次装入内存,需要在内存 和外部存储器 之 间进行多次数据交换,以达到排序整个文件的目的。外部排序最常用的算法是多路归并排序,即将原文件分解成多个能够一次性装人内存的部分,分别把每一部分调 入内存完成排序。然后,对已经排序的子文件进行归并排序。 外排序包括两个步骤。①把要排序的文件中的一组记录读入内存储器的排序区,对读入的记录按上面讲到的内部排序 法进行排序,排序之后输出到外存储器。重复这一过程,每次一组,直到原文件所有记录被处理完毕。②将上一步分组排好序的记录两组两组地合并排序。在内存容量允许的条件下,每组中包含的记录越大越好,这样可减少合并的次数。 算法可通过B树 实现。
[编辑 ] 平均时间复杂度
- 插入排序 O(n 2 )
- 冒泡排序 O(n 2 )
- 选择排序 O(n 2 )
- 快速排序 O(n log n )
- 堆排序 O(n log n )
- 归并排序 O(n log n )
- 基数排序 O(n )
- 希尔排序 O(n 1.25 )
[编辑 ] 实际测试结果
OS: winxp, Compiler: vc8, CPU:Intel T7200, Memory: 2G
不同数组长度下调用6种排序1000次所需时间(秒)
length shell quick merge insert select bubble
100 0.0141 0.359 1.875 0.204 0.313 0.421
1000 0.218 0.578 2.204 1.672 2.265 4
5000 1.484 3.25 14.14 41.392 63.656 101.703
10000 3.1 7.8 23.5 253.1 165.6 415.7
50000 21.8 40.6 121.9 411.88 6353.1 11648.5
100000 53.1 89 228.1 16465.7 25381.2 44250
结论:
数组长度不大的情况下不宜使用归并排序,其它排序差别不大。
数组长度很大的情况下Shell最快,Quick其次,冒泡最慢。