编程日记✧
图像算法工程师
展开
-
C#实现凸壳算法
【代码】C#实现凸壳算法。原创 2025-01-10 11:20:33 · 237 阅读 · 0 评论 -
C#实现图像骨架化(ZhangSuen细化算法)
【代码】C#实现图像骨架化(ZhangSuen细化算法)。由于C#中无法直接调用OpenCV中的cv2.ximgproc.thinning函数,故需要手写一个实现该功能的代码。原创 2024-12-26 18:01:33 · 258 阅读 · 0 评论 -
图像去噪 | Neighbor2Neighbor:单噪声图像的自监督去噪 训练自己的数据集
近年来,神经网络的快速发展使图像去噪受益匪浅。然而,对大量去噪图像对的监督要求限制了这些模型的广泛应用。虽然已经有一些尝试只使用单个噪声图像来训练图像去噪模型,但现有的自监督去噪方法存在网络训练效率低、有用信息丢失或依赖噪声建模的问题。在本文中,提出了一种非常简单但有效的方法,称为Neighbor2Neighbor,用于训练仅含噪图像的有效图像去噪模型。首先,提出了一种随机邻居子采样器,用于生成训练图像对。原创 2024-12-12 13:34:36 · 221 阅读 · 0 评论 -
图像去噪 | Zero-Shot Noise2Noise:无需任何数据的高效图像去噪[有监督去噪、CVPR2023] 训练自己的数据集
近年来,自监督神经网络在图像去噪方面表现出了良好的性能。然而,当前的无数据集方法要么计算成本高,要么需要噪声模型,要么图像质量不足。在这项工作中,作者展示了一个简单的2层网络,不需要任何训练数据或噪声分布的知识,可以以低计算成本实现高质量的图像去噪。作者的方法是由Noise2Noise和Neighbor2Neighbor驱动的,可以很好地去噪像素独立的噪声。几乎所有的监督式或者非监督去噪方式,包括作者提出的方法,都依赖于一个前提,就是干净的自然图片与具有不同分布方式的噪声图片,可以分解为一对下采样图像。原创 2024-12-12 10:56:37 · 115 阅读 · 0 评论 -
SAFT(Synthetic Aperture Focusing Technique)基于合成孔径技术的图像重建方法
SAFT通过合成虚拟孔径和信号聚焦等技术,提供了一种提高成像分辨率和质量的有效方法。尽管其计算复杂度较高,但它在超声波成像、雷达成像等领域中表现出色,尤其适用于需要提高图像分辨率和对比度的应用。原创 2024-12-09 16:48:58 · 139 阅读 · 0 评论 -
MRI联合超声影像学预测乳腺癌分子水平表达
本研究探讨了通过联合MRI和超声影像学来预测乳腺癌分子水平表达的可能性,涵盖了医学影像学、分子生物学和计算机视觉等多个领域。该任务的目标是利用影像数据预测乳腺癌的分子标志物(如HER2、ER、PR等)表达水平,从而帮助诊断、预后评估及治疗决策。研究方向影像特征提取:通过分析MRI和超声影像中的纹理、形态学特征、血流情况等,提取与肿瘤生物学特征相关的信息。多模态影像融合:通过深度学习模型(如联合卷积网络)将MRI和超声影像进行融合,提高预测的准确性。预测分子水平表达。原创 2024-11-25 14:15:53 · 212 阅读 · 0 评论 -
畸变矫正 | DR-GAN: Automatic Radial Distortion RectificationUsing Conditional GAN in Real-Time实时径向畸变自动矫正
'DR-GAN: Automatic Radial Distortion RectificationUsing Conditional GAN in Real-Time'条件GAN实时径向畸变自动矫正学习原创 2024-01-08 14:56:36 · 511 阅读 · 0 评论 -
畸变矫正 | 图像盲几何畸变校正Blind Geometric Distortion Correction on Images Through Deep Learning(CVPR 2019)复现
‘Blind Geometric Distortion Correction on Images Through Deep Learning(CVPR 2019)‘ 基于深度学习的图像盲几何畸变校正学习原创 2023-12-13 10:44:22 · 2078 阅读 · 7 评论 -
畸变矫正 | 深度学习相关论文学习
畸变矫正是计算机视觉领域中的一个重要任务,旨在纠正图像中的畸变或失真。这些畸变可能是由于相机镜头的特性或成像过程中的其他因素引起的。在畸变矫正的研究中,有许多方法和技术被提出和应用。其中一种常见的方法是使用校准板或参考物体来获取相机的畸变参数,并使用这些参数对图像进行矫正。另一种方法是基于几何模型或变换模型来估计和纠正畸变。近年来,深度学习方法在畸变矫正中也取得了显著的进展。通过使用大量畸变和矫正图像对进行训练,深度神经网络可以学习到图像中的畸变模式,并自动对新图像进行矫正。原创 2024-01-09 11:13:58 · 1261 阅读 · 1 评论 -
医疗影像分割 | 使用EMCAD训练 语义分割自己的数据集
一种新的高效多尺度卷积注意力解码器,旨在优化性能和计算效率。EMCAD利用独特的多尺度深度卷积块,通过多尺度卷积显著增强特征映射。EMCAD还采用通道、空间和分组(大核)门控注意机制,这些机制在捕获复杂的空间关系时非常有效,同时关注突出区域。通过使用组卷积和深度卷积,EMCAD非常高效且可扩展性好(例如,使用标准编码器时只需要1.91M参数和0.381G FLOPs)。原创 2024-11-18 13:14:10 · 195 阅读 · 0 评论 -
医疗影像分割 | 使用yolo v11训练自己的数据集
医疗影像分割 | 使用yolo v11训练自己的数据集。原创 2024-11-12 10:02:29 · 221 阅读 · 0 评论 -
医疗影像分割 | 使用U-KAN训练自己的数据集
U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation,U-KAN结果看着不错,超过了U-Mamba。原创 2024-10-24 16:10:47 · 350 阅读 · 0 评论 -
高通量反卷积三维类器官动力学在细胞分辨率癌症药理学与Cellos
使用经典算法对3D类器官进行分割计算类器官体积、密实度等形态特征类器官分割的主要步骤如下:将图像转换为灰度图像,并使用阈值法创建二值化图像。使用 'binary opening' 和 'dilation' 算法来关闭小孔并去除小斑点。这些操作是在 2D 'max-projection' 图像上进行的, 即投影所有z轴上的最大强度。将二值化后的图像与原始图像相乘, 以获得'清洁'后的图像。在单个视野(field)而不是整个well上执行上述步骤, 因为视野之间噪音和强度可能会有所不同。原创 2024-10-24 11:33:14 · 63 阅读 · 0 评论 -
医疗成像中的点云处理:PCL库算法及其应用详解
在医学成像中,点云处理常用于3D重建、骨骼或器官的形状分析,以及术前规划和手术导航。PCL(Point Cloud Library)是一种广泛使用的开源库,提供了丰富的点云处理算法,适用于医疗图像的点云数据处理。原创 2024-10-22 10:32:12 · 208 阅读 · 0 评论 -
图像分割 | 使用FSMINet (GRSL 2022)训练自己的数据集
光学遥感图像中的显著性目标检测引起了广泛关注。为了解决物体大规模变化、背景杂乱、形状不规则和光照差异等问题,基于卷积神经网络(CNN)的模型被提出并展现了良好性能。然而,顶级模型通常依赖于较大的模型规模和高计算成本,这限制了其实际应用。为此,本文引入了完全压缩的多尺度(FSM)模块,能够将特征图从高维压缩到低维,并通过多尺度策略提升特征表征能力。基于FSM模块,构建了FSM推理网络(FSMI-Net),该网络具有更少的参数和更快的推理速度。特别地,FSMI-Net仅包含3.6M参数,对于384×384输入原创 2024-10-21 16:43:01 · 181 阅读 · 0 评论 -
图像分割 | 使用UltraLight-VM-UNet训练自己的数据集(Mamba+UNet医学影像分割实战)
一种创新的超轻量级医学图像分割网络UltraLight VM-UNet[1],该网络通过将最新的状态空间模型(SSM)技术——Mamba,与经典的UNet架构相结合,该论文实现了皮肤病变分割任务 中参数数量和计算负载的显著减少。UltraLight VM-UNet的参数仅为0.049M,GFLOPs为0.060,相比传统模型在性能上保持竞争力甚至更优。原创 2024-10-17 13:35:16 · 440 阅读 · 0 评论 -
红外图像处理算法详解:从基础到应用
红外图像处理算法在夜视监控、医疗检测和工业监控等领域具有重要应用。本文介绍了红外图像的特点及其处理算法,包括预处理、图像分割、目标检测与识别、目标跟踪等关键技术。通过噪声去除、对比度增强等方法提升图像质量,利用阈值分割和深度学习模型精确定位和识别目标。与此同时,本文还探讨了红外图像处理在军事、医疗和工业领域的典型应用,并展望了未来技术发展的方向,如深度学习优化、多模态图像融合和边缘计算的潜力。红外图像处理技术将继续推动智能化和自动化的发展。原创 2024-09-14 16:05:35 · 1046 阅读 · 0 评论 -
医疗影像分割 | 使用SAM2-UNet训练自己的数据集
使用SAM2-UNet训练自己的数据集 — 医学影像分割原创 2024-09-14 15:52:30 · 1397 阅读 · 9 评论 -
医疗影像分割 | 使用3DUNet训练自己的数据集(pytorch)
使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割原创 2024-09-04 19:04:43 · 921 阅读 · 0 评论 -
数字图像处理(一系列对图像进行处理、分析和改进的技术)
数字图像处理是一种通过数学和算法对图像进行操作的技术,旨在增强、分析或理解图像内容。它涵盖了多种处理方法,如图像降噪、分割、配准、增强、边缘检测等。在降噪方面,常见技术包括均值滤波、高斯滤波和中值滤波;图像分割则利用阈值法、区域生长等方法。形态学处理和频域处理等技术则用于进一步优化图像效果。数字图像处理在医学成像、工业检测、安防监控及遥感图像等领域具有广泛应用,推动了图像分析的智能化与自动化发展。原创 2024-08-30 10:37:46 · 272 阅读 · 0 评论 -
医疗图像处理算法的原型搭建
详细介绍了医疗图像处理算法原型搭建的关键步骤和考虑。它涵盖了从需求分析、数据收集与管理、算法选择与设计,到算法实现与验证、性能评估与调优、临床验证与反馈、法规遵从与合规性测试、模型集成与部署、文档编写与交付,以及持续改进与更新的全过程。通过这些步骤,确保算法在医疗应用中的有效性、安全性和合规性,从而帮助医生做出更准确的诊断和决策。原创 2024-08-19 12:02:38 · 109 阅读 · 0 评论 -
基于视觉的医疗图像三维重建与定位
在医学领域,基于视觉的三维重建与定位技术具有重要的应用价值,尤其在手术规划、肿瘤定位、诊断分析等方面。原创 2024-08-15 11:36:41 · 202 阅读 · 0 评论 -
医学超声图像后处理功能
详细介绍了如何使用Python进行医学超声图像的后处理,重点涵盖了去噪声、图像增强、边缘检测、图像分割与轮廓提取、纹理分析以及三维重建等多个方面。去噪声方法包括高斯滤波、中值滤波和自适应滤波,分别适用于不同类型的噪声处理;图像增强技术如对比度增强、直方图均衡和伽马校正可以提高图像的可视性;边缘检测通过Sobel算子和Canny边缘检测实现,能够提取清晰的边缘信息;图像分割采用区域生长和活动轮廓模型来识别目标区域;纹理分析利用灰度共生矩阵和小波变换来提取多尺度纹理特征。最后,通过多平面重建和体绘制技术展示了超原创 2024-08-15 10:43:38 · 414 阅读 · 0 评论 -
医疗图像中的图像语义理解
医疗图像中的图像语义理解是指这一领域结合了医学、计算机科学和图像处理技术,旨在辅助医生进行诊断、治疗规划及疾病监测。。图像语义理解在医疗领域的应用前景广阔,但也面临着技术、法规和伦理方面的挑战。随着技术的不断进步和数据的积累,这一领域有望在未来取得更多突破,为医疗保健提供更强大的工具和解决方案。原创 2024-06-18 15:00:00 · 173 阅读 · 0 评论 -
医疗图像的校准
医疗图像的校准是确保图像在不同设备和场景下像素值与实际物理量之间映射的重要过程。它提高了医学影像的一致性和可比性,增强了临床应用的可靠性和精度。校准方法包括计算校准因子,以调整图像的灰度级别,从而确保其与标准参考物的物理密度值一致。具体实现中,使用了Python的OpenCV库结合NumPy计算和应用了校准因子,以确保医疗图像的准确性和标准化处理。示例代码演示了如何使用Keras和TensorFlow实现U-Net模型进行医疗图像的自动轮廓勾画,展示了技术在医疗图像处理中的应用和实现。原创 2024-06-17 10:16:52 · 269 阅读 · 0 评论 -
医学图像算法中的 器官识别与提取
医疗图像中的器官识别与提取是医学影像分析的重要任务,涉及多个步骤和方法。首先对图像进行预处理,如去噪、归一化和增强。接着进行器官分割,采用传统方法(如阈值分割、区域生长和分水岭算法)和现代机器学习方法(如K-means聚类和随机森林)。深度学习方法(如CNN、U-Net和Mask R-CNN)在这一领域表现尤为出色。分割后提取形态学、纹理和统计特征。最终,通过机器学习和深度学习方法(如SVM、神经网络和迁移学习)进行器官识别与分类。验证与评估步骤包括准确率、召回率和F1分数等指标。原创 2024-06-16 10:37:57 · 181 阅读 · 0 评论 -
医疗图像自动轮廓勾画
(也称为自动分割)是一个重要的任务,旨在从医学影像数据中自动提取出感兴趣的解剖结构或病变区域。这项技术在医学诊断、治疗规划和随访中起着至关重要的作用。以下是对这项技术的概述以及常用方法和挑战。原创 2024-06-14 16:05:57 · 272 阅读 · 0 评论 -
医学影像加速的技术和方法,未来医学中的高效图像技术革新
医学影像加速技术通过先进的算法和技术减少成像时间,保持或提升图像质量。MRI和CT是临床诊断重要工具。并行成像技术通过多个接收线圈收集信号减少相位编码步骤,加速成像。SENSE、SMASH、GRAPPA、mSENSE等技术通过不同方式优化数据采集和重建过程。压缩感知技术利用图像数据的稀疏性,在非均匀随机采样基础上重建图像,减少采样点数目,无明显降低图像质量。这些技术对于不能长时间保持静止的患者尤其有益,但也需考虑线圈设计、放置要求及可能增加的噪声等局限性。原创 2024-04-25 14:59:56 · 174 阅读 · 0 评论 -
现代机器学习(ML)技术在医疗成像领域的新应用
现代机器学习技术在个性化医疗中的应用正飞速发展,尤其是在医疗成像领域。通过分析患者的医学影像数据,深度学习模型能够为每位患者提供定制化的疾病风险评估和治疗方案。这些模型能够识别疾病的早期迹象,预测治疗效果,从而辅助医生制定个性化的治疗计划。此外,结合遗传信息,机器学习技术还能够提供更精确的医疗建议。然而,实现这一目标还需解决数据隐私、模型解释性和泛化能力等挑战,并通过临床试验验证其临床价值和安全性。原创 2024-04-23 11:52:30 · 496 阅读 · 0 评论 -
医学影像增强:空间域方法与频域方法等
这篇博客全面综述了医学影像图像增强技术,尤其是空间域和频域方法。文章首先解释了医学影像的重要性以及图像增强在提高诊断准确性中的作用。接着,深入探讨了空间域方法,包括直方图均衡化、对比度限制自适应直方图均衡化(CLAHE)等技术,以及它们如何改善图像质量,突出重要细节。此外,也分析了频域方法,例如傅里叶变换和小波变换等,在去噪和边缘增强方面的应用。文章评估了这些技术在不同情况下的效果,并讨论了它们在实际临床应用中的潜力和挑战。最后,提出了未来研究方向,强调了结合多种技术和人工智能算法的重要性。原创 2024-04-22 20:36:20 · 651 阅读 · 0 评论 -
医学影像图像去噪:滤波器方法、频域方法、小波变换、非局部均值去噪、深度学习与稀疏表示和字典学习
本文全面探讨了医学影像图像去噪技术,重点讨论了多种去噪方法。首先介绍了滤波器方法,如中值滤波和双边滤波,这些方法易于实现但可能会模糊图像细节。接着,文章分析了频域方法,包括傅里叶和小波变换,这些技术能在保留边缘信息的同时去除噪声。非局部均值去噪作为一种更先进的空间域方法,通过利用图像内的冗余信息来保留结构。深度学习方法,尤其是基于卷积神经网络的技术,近年来在图像去噪领域取得了显著进展,因其强大的特征学习能力而备受关注。最后,文章讨论了稀疏表示和字典学习在去噪中的应用。原创 2024-04-22 19:47:55 · 1215 阅读 · 2 评论 -
探索视网膜:从时域到谱域光学相干断层扫描(OCT)的演进与应用
从时域到谱域光学相干断层扫描(OCT)的演进与应用原创 2024-02-27 11:18:18 · 430 阅读 · 0 评论 -
医疗影像分类 | 阿尔兹海默症分类识别(2D+3D模型)(数据集为3D MRI扫描图像)
数据集为人的头部3D MRI扫描图像,包含三种类别,分别是健康样本、轻度认知障碍样本和阿尔茨海默症样本。使用该影像数据训练模型算法,在独立的测试数据集中以尽量高的准确率把这三种类别的样本区分开来。每个样本都是3D的数据图像。原创 2022-12-08 10:51:45 · 2453 阅读 · 13 评论 -
医学试纸条图像处理技术
医学试纸条图像处理是一个重要的领域,它涉及到从医学试纸条上提取和分析信息的各种技术。原创 2024-02-25 14:36:24 · 892 阅读 · 0 评论 -
光学相干断层扫描(OCT)在 妇科诊断 中的革命性应用
尽管OCT在妇科的应用提供了许多潜在的优势,但它仍然是一个相对新的技术,并不是所有医疗机构都有能力提供这种类型的成像服务。随着技术的发展和医生对OCT的熟悉程度的提高,预计OCT将在妇科和其他医学领域中扮演越来越重要的角色。早期发现和准确的分类是提高治疗成功率的关键。虽然这是一个相对较新的应用领域,但OCT的非侵入性和高分辨率成像能力可能提供有价值的信息,以提高辅助生殖技术的成功率。:光学相干断层扫描(OCT)在阴道和外阴组织的评估中的应用正在逐渐展开,提供了一种新的方法来诊断和监测各种妇科疾病。原创 2024-02-23 20:30:01 · 1259 阅读 · 0 评论 -
胶囊内镜技术的革命与挑战
当胶囊内镜被吞咽并开始通过消化道时,它的相机不断拍摄图片,同时LED灯提供必要的照明。:虽然胶囊内镜能够提供清晰的消化道图像,但其解析度相比传统内镜可能较低,这可能会影响对病变的识别和评估。此外,由于胶囊的移动性,可能会出现模糊的图像,这会影响诊断的准确性。在智能医疗领域,这些问题的解决需要更先进的技术创新、数据处理能力的提升、成本降低策略以及更精确的定位和诊断工具的开发。:胶囊内镜的成本相对较高,这可能限制其在低收入地区或资源有限的医疗体系中的可用性和普及。原创 2024-02-23 19:28:07 · 411 阅读 · 0 评论 -
色散补偿 在智能医疗领域的应用
色散补偿主要用于光学和电信领域,特别是在光纤通信中,用来纠正或减少由于色散效应引起的信号失真。色散是指不同频率(或波长)的光波在介质中传播速度不同的现象。在光纤通信系统中,色散会导致光脉冲随着传播逐渐展宽,从而降低信号的传输质量和通信系统的性能。色散补偿的目的是通过一系列技术和材料来平衡或逆转色散效应,以保持信号的完整性和传输效率。色散补偿技术的选择和设计取决于多种因素,包括通信系统的类型、传输距离、信号的波长和带宽等。正确的色散补偿对于提高光纤通信系统的性能和可靠性至关重要。原创 2024-02-20 14:22:18 · 437 阅读 · 0 评论 -
超声成像(Ultrasound Imaging)技术的不同应用
超声成像技术利用声波探测和成像身体内部结构,包括三种主要的扫描方式:A-scan、B-scan和C-scan。A-scan(振幅扫描)主要用于测量材料厚度或检测内部缺陷,如裂纹或空洞,广泛应用于医疗诊断和工业无损检测。B-scan(亮度扫描)提供二维横切面图像,特别适用于产科和眼科,用于观察胎儿发育或眼睛结构。C-scan(平面扫描)提供物体的平面视图,用于映射材料内部的缺陷分布,如腐蚀、裂缝或层裂,适用于检测大型结构如航空航天部件和复合材料的完整性。这三种扫描技术各有其特点和应用,展现了超声波在不同领域的原创 2024-02-03 19:09:09 · 872 阅读 · 0 评论 -
新型内窥镜成像技术研究
变焦光学、光学相干层析成像(OCT)和荧光共聚焦成像是先进的成像技术,广泛应用于科研和医疗领域。变焦光学通过调整镜头组件实现不同焦距,提供灵活的视野和放大能力,适用于摄影和望远镜。OCT利用近红外光和低相干干涉原理,提供样本的高分辨率三维图像,尤其在眼科和皮肤科领域具有重要价值。荧光共聚焦成像结合荧光和共聚焦技术,通过空间滤波器提高图像分辨率,适用于细胞和分子层面的研究,能够进行三维重建和多通道成像。尽管具有高分辨率和非侵入性等优点,这些技术也有各自的局限。原创 2024-02-02 14:12:56 · 1031 阅读 · 0 评论
分享