little06960
码龄3年
关注
提问 私信
  • 博客:4,658
    4,658
    总访问量
  • 9
    原创
  • 1,707,999
    排名
  • 3
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2021-07-30
博客简介:

little06960的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得6次评论
  • 获得26次收藏
创作历程
  • 6篇
    2023年
  • 4篇
    2022年
成就勋章
TA的专栏
  • 操作指南
    1篇
  • 论文阅读
    8篇
  • 学习库
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PyCharm 连接服务器进行远程开发和调试

首先配置 Pycharm 服务器的代码同步,打开 Tools -> Deployment -> Configuration,点击左边的 + 添加一个部署配置,输入配置名 Name,Type 选择 SFTP,然后确认。3.配置远程服务器的 IP(Host),端口(默认22),用户名和密码,Root Path 是项目文件在远程服务器中的根目录,根据需求配置,例如 /home/ubuntu/ML,这个目录需要登录用户的创建权限。有几种方法可以实现本地和远程文件的同步,手动和当文件保存后自动触发。
原创
发布博客 2023.01.05 ·
431 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文阅读笔记】Image Captioning: Transforming Objects into Words

在传统transformer上进行改进,推出Object Relation Transformer,特别适合于图像字幕的任务。
原创
发布博客 2023.01.05 ·
517 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读笔记】Recurrent fusion network for image captioning.

循环融合网络(RFNet),利用多个图像表示的互补信息来进行图像标题。
原创
发布博客 2023.01.05 ·
285 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Pytorch中LSTM的输入输出参数含义

结合代码讲解
转载
发布博客 2023.01.03 ·
183 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读笔记】Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.

受机器翻译的attention机制启发,将其应用到image caption领域,并提出了hard和soft两种attention机制。相比较来说,hard attention更难训练,效果也更好。这篇文章打开了attention图像领域的先河。
原创
发布博客 2023.01.02 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文阅读笔记】Show and Tell: A Neural Image Caption Generator.

image captioning神经网络开山之作,这篇文章提出了一个可以自动查看图像并生成合理描述的端到端神经网络系统,称之为NIC。
原创
发布博客 2023.01.02 ·
420 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

【论文阅读笔记】Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering.

本文提出了一种结合bottom-up attention和top-down attention的视觉注意力机制,可以看成CNN-Attention + LSTM-Attention。它能够更有效地关注场景的结构,也具有更好地可解释性。
原创
发布博客 2022.12.29 ·
362 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读笔记】Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

为了提高从图到句子的质量,我们提出了一种专门针对图的解码器language decoder for graphs ,该解码器包括一个基于图的注意机制,它同时考虑了图的语义和结构,以及一个图的更新机制,它记录了描述的内容和没有描述的内容。然而,大多数图像字幕模型只被动生成图像描述,并不关心用户对什么内容感兴趣,描述应该有多详细,也就是说,不能根据不同的用户意图自动生成不同的描述。基于ASG,我们提出了一种asg2caption模型,该模型能够识别图中的用户意图和语义,从而根据图的结构生成所需的标题。
原创
发布博客 2022.12.29 ·
280 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

【论文阅读笔记】Attention on Attention for Image Captioning.

AOA改善了以往的注意力机制,以解决不相关的注意问题,将AoA模型应用与编码与解码阶段,带来了最新的性能。并且具有优越性和普适性。
原创
发布博客 2022.12.27 ·
632 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

image captioning经典论文分类整理+部分有源码

整理了一些关于image captioning的经典论文
原创
发布博客 2022.12.27 ·
1170 阅读 ·
4 点赞 ·
1 评论 ·
23 收藏