背包所有可能放置方法(C++)

回溯法求解,每次每个物品都有放与不放两种情况,每次放时要判断是否能放。

#include<iostream>

using namespace std;
//回溯函数定义,rw 剩余容量,i第i个物品,v体积数组,number到第i个物品处有几种装法,n物品总数
int backtrack(int rw, int i, int *v, int number, int n);
//回溯法背包问题
//背包容量w
//n个零食,每个零食体积为v[i]
//输入:
//n w
//v[0]...v[n-1]
//输出
//最多几种装法,什么也不装也算一种
//例如,输入为
//3 10
//1 2 4
//输出为
//8
//
//例如,输入为
//3 10
//1 9 4
//输出为
//6
//
//例如,输入为
//3 10
//5 5 3
//输出为
//7
int main() {
    int n;
    cin >> n;
    int w;
    cin >> w;
    int* v = new int[n];
    for (int i = 0; i < n;i++) {
        cin >> v[i];
    }
    //排序,从小到大
    for (int i = 0; i < n;i++) {
        for (int j = i; j < n; j++)
        {
            if (v[i] > v[j]) {
                int tmp = v[i];
                v[i] = v[j];
                v[j] = tmp;
            }
        }
    }
    int result = 1;
    result=backtrack(w,0,v,result,n);
    cout << result;
    system("pause");
    return 0;
}
//rw 剩余容量,i第i个物品,v体积数组,number到第i个物品处有几种装法,n物品总数
int backtrack(int rw,int i,int *v,int number,int n) {
    int tmp1 = 0;//i装的方法数
    int tmp2 = 0;//i不装的方法数
    if (i == n) {
        //装与不装都是一种方法
        return 1;
    }
    number++;
    if (rw >= v[i]) tmp1=backtrack(rw-v[i],i+1,v,number,n);
    number--;
    tmp2=backtrack(rw , i + 1, v, number, n);
    return tmp1 + tmp2;//返回放与不放两种方法的总和
}
### C++ 实现完全背包问题的二维数组方法 在解决完全背包问题时,可以利用动态规划的思想来构建解决方案。对于完全背包问题,通常会定义一个二维数组 `dp[i][j]` 表示从前 `i` 个物品中选取若干件放入容量为 `j` 的背包所能获得的最大价值[^3]。 以下是基于 C++ 编写的完全背包问题的二维数组实现代码: ```cpp #include <iostream> #include <vector> using namespace std; int main() { int N, V; // 物品数量N 和 背包总容量V cin >> N >> V; vector<int> weight(N + 1); // 存储每个物品的重量 vector<int> value(N + 1); // 存储每个物品的价值 for (int i = 1; i <= N; ++i) { // 输入物品的重量和价值 cin >> weight[i] >> value[i]; } // 创建二维 DP 数组 vector<vector<int>> dp(N + 1, vector<int>(V + 1, 0)); // 动态转移方程 for (int i = 1; i <= N; ++i) { for (int j = 0; j <= V; ++j) { if (j >= weight[i]) { // 如果当前背包容量能放下第i个物品 dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]); } else { dp[i][j] = dp[i - 1][j]; // 当前背包无法放置物品 } } } cout << "最大价值:" << dp[N][V] << endl; // 输出最终结果 return 0; } ``` #### 解析 上述代码的核心逻辑在于通过两层嵌套循环完成状态转移: - 外层循环遍历每一个物品 `i`。 - 内层循环遍历背包容量 `j`,并判断是否能够加入当前物品以获取更大的价值。 - 对于每种情况,取两种决策中的较大者:要么不放当前物品 (`dp[i-1][j]`);要么放入当前物品 (`dp[i][j-weight[i]] + value[i]`)。 此方法的时间复杂度为 O(N*V),空间复杂度同样为 O(N*V)[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值