方法一:train/test函数
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> list(y)
[0, 1, 2, 3, 4]
>>>
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],
[0, 1],
[6, 7]])
>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],
[8, 9]])
>>> y_test
[1, 4]
>>>
>>> train_test_split(y, shuffle=False)
[[0, 1, 2], [3, 4]]
Parameters:
*arrays : sequence of indexables with same length / shape[0]
Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.
test_size : float, int or None, optional (default=None)
If float, should be between 0.0 and 1.0 and represent the proportion of the

本文介绍了如何使用scikit-learn库中的train_test_split函数进行数据集的train-test分离,详细解析了参数如test_size、train_size、random_state、shuffle和stratify的含义及用法。此外,还提及了自定义编写数据集分离的方法,提供了一个例子,其中训练集占75%,包含不同label数量的数据。
最低0.47元/天 解锁文章
1269

被折叠的 条评论
为什么被折叠?



