[LeetCode]4.Median of Two Sorted Arrays (hard)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/littlehaes/article/details/79954680

Welcome To My Blog

4. Median of Two Sorted Arrays (hard)

给定两个有序数组,找中位数median,按照自己的思路AC了,用了挺长时间
需要学习基础算法
4.1.png
1. 心得:
+ 解题要形成自己的框架!
+ 考虑索引在数组中是否有效,同时也要考虑索引的实际含义
+ 对两个需要同时成立的大小约束A[i-1]

class Solution{
    public double findMedianSortedArrays(int[] A, int[] B){
        int m = A.length;
        int n = B.length;
        //1.如果m>n则调换数组顺序,使满足m≤n,对长度短的数组做二分,速度更快!
        if(m>n) return findMedianSortedArrays(B, A);
        //2.(边界)当A为空时找出B中的median即可,分奇偶讨论
        //没有A,B都为空的情况
        if (m == 0 && n%2==1) return B[(n+1)/2-1];
        if(m == 0 && n%2==0) return (B[n/2-1]+B[n/2])/2.0;
        int iMin = 0,iMax = m,p = (m+n+1)/2;// p是partial,代表i,j等式中固定不变的成分
        //3.通过循环实现二分法,时间复杂度是O(log(m+n))
        while(iMin <= iMax){
            int i = (iMin + iMax)/2;
            int j = p - i;
            //4.两个大小关系约束分别处理,会发现可以合并成两行
            //4.1 0<i<m时0<j<n或i==0时,0<j<n   此时B[j-1] A[i]都有意义
            if(((i>0 && i< m) ||i == 0) && B[j-1] > A[i]) iMin += 1;
            //4.2 0<i<m时0<j<n或i==m时j>0(j肯定小于n,因为j==n会导致只有左边部分)
            else if (((i>0 && i< m)||i == m) && A[i-1] > B[j]) iMax -= 1;
            //6. 进入到else说明对于0≤i≤m有B[j-1] < A[i] && A[i-1] < B[j],找出median即可
            else {
                // i==0
                if (i == 0 && j == n && m == n) return (A[0] + B[n - 1]) / 2.0;
                else if (i == 0 && j == n && m + 1 == n) return B[n - 1];
                else if (i == 0 && j < n && (m + n) % 2 == 1) return B[j - 1];
                else if (i == 0 && j < n && (m + n) % 2 == 0) return ( B[j-1]+Math.min(A[0], B[j])) / 2.0;
                // i == m
                else if (i == m && j == 0) return (A[m - 1] + B[0]) / 2.0;
                else if (i == m   && (m + n) % 2 == 1) return Math.max(A[m - 1], B[j - 1]);
                else if (i == m   &&(m + n) % 2 == 0) return (Math.max(A[m - 1], B[j - 1]) + B[j]) / 2.0;
                //  0 < i < m
                else if ((m + n) % 2 == 1) return Math.max(A[i - 1], B[j - 1]);
                else return (Math.max(A[i - 1], B[j - 1]) + Math.min(A[i], B[j])) / 2.0;
            }
        }
        //double函数的返回值,其实这里写任何double的数都可以,因为用不到
        return 0.0;
        }
    }
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页