决策树(一)

本文介绍了决策树的基本概念,包括信息增益、熵和条件熵。详细阐述了ID3算法和C4.5算法的工作原理,以及如何通过信息增益和信息增益比选择特征。此外,还提到了决策树的剪枝过程以及C5.0算法在R语言中的实现和优缺点。
摘要由CSDN通过智能技术生成

1. 特征选择

1.1 信息增益

熵(entropy)是表示随机变量不确定性的度量,设x是一个取有限个值的离散随机变量,其概率分布为:
P ( X = x i ) = p i , i = 1 , 2 , ⋯   , n P(X=x_i)=p_i,i=1,2,\cdots,n P(X=xi)=pi,i=1,2,,n
则随机变量X的熵定义为
H ( X ) = − ∑ i = 1 n p i l o g p i H(X)=-\sum_{i=1}^np_ilog p_i H(X)=i=1npilogpi
熵只依赖于X的分布,与X的取值无关,所以可将X的熵记做 H ( p ) H(p) H(p),即
H ( p ) = − ∑ i = 1 n p i l o g p i H(p)=-\sum_{i=1}^np_ilogp_i H(p)=i=1npilogpi
条件熵 P ( Y ∣ X ) P(Y|X) P(YX)表示在已知随机变量X的条件下随机变量Y的不确定性。随机变量X给定的条件下Y的条件熵为
H ( Y ∣ X ) = ∑ i = 1 n p i H ( Y ∣ X = x i ) , 这 里 , p i = P ( X = x i ) , i = 1 , 2 , ⋯   , n . H(Y|X)=\sum_{i=1}^np_iH(Y|X=x_i),\\ 这里,p_i=P(X=x_i),i=1,2,\cdots,n. H(YX)=i=1npiH(YX=xi),pi=P(X=xi),i=1,2,,n.
信息增益(information gain)表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。
定义: 特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即
g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D,A)=H(D)-H(D|A) g(D,A)=H(D)H(DA)
设:D为训练数据集,|D|为其样本容量,即样本个数。设有K个类 C k , k = 1 , 2 , ⋯   , K C_k, k=1,2,\cdots,K Ck,k=1,2,,K, ∣ C k ∣ |C_k| Ck为属于类 C k C_k Ck的样本个数, ∑ k = 1 K ∣ C k ∣ = ∣ D ∣ \sum_{k=1}^K|C_k|=|D| k=1KCk=D.设特征A有n个不同的取值 { a 1 , a 2 ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值