【区间dp练习】【洛谷】P1040 加分二叉树

本文探讨了如何利用区间动态规划解决基于中序序列的二叉树遍历问题,详细介绍了转换思路,避免了先求树再计算值的冗余过程,通过具体代码示例展示了算法实现。

0.总结

  • Get to the points first. The article comes from LawsonAbs!
  • 区间dp
  • 转换思路
  • 二叉树的遍历

1.题意

2.主要思路

  • 区间dp
    区间dp的套路是固定的。可以参考我之前写的博客区间DP 。相较区间dp而言,我觉得本题的重点是:为什么可以用区间dp解决此题? 因为给出的二叉树遍历是中序序列,所以可以采用区间DP【因为任意一段序列在树中必是连续的】,但如果是先序或者后序遍历,则区间dp不一定能顺利解决。
  • 思路转换
    本题的坑点是:切莫以为要先确定树长什么样子才能解决此题,然后就掉进“先求树,再计算值”的冗余复杂过程里

3.代码

#include<iostream>
using namespace std;
const int N = 35;
int score[N];//每个节点的分数
int dp[N][N],root[N][N];
//dp[len][i] 表示长度为len,左端点为i时整个区间可以得到的最大值;
//root[i][j]表示 区间[i,j]内的根节点 

//输出前序遍历 [left,right] 
void pre(int left,int right){
	int r = root[left][right];
	if(left > right){
		r = left; 		
		return ;
	}
	cout << r <<" ";//输出 
	pre(left,r-1);//根据中序遍历和后序遍历的性质以及题意,可知接下来的区间则是[left, r-1]
	pre(r+1,right);
}
 
int main(){
	int n;
	cin >> n;	
	//输入各自的分数 
	for(int i = 1;i<=n;i++){ 
		cin >> score[i];
		dp[1][i] = score[i];
		root[i][i] = i;
	} 
	int temp ,left,right;
	for(int len = 2;len <=n ;len++){//区间长度 [1,n],这里直接从2开始算 
		for(int i = 1;i <= n-len + 1;i++){
			int j = i+len-1;//区间的右端点
			for(int k = i;k<=j;k++) {//枚举根节点的位置 => 以k为根				
				if(k==i) 
					left = 1;//左子树的分数为1
				else
					left =  dp[k-i][i];
				if(k == j)
					right = 1;
				else
					right = dp[j-k][k+1]; 
				temp = left * right + score[k];
				if(temp > dp[len][i]){
					dp[len][i] = temp;
					root[i][j] = k;//在[i,j]这个区间中,以k为根 
				}
			}
		}
	}
	cout << dp[n][1]<<"\n"; 	
	//接着输出前序遍历
	pre(1,n);	
}

### 解思路 洛谷 P1404 加分二叉树是一道经典动态规划,涉及树形结构和区间 DP 的思想。以下是解的核心思路: #### 1. 状态定义 定义 `dp[l][r]` 表示以节点编号从 `l` 到 `r` 的子树所能获得的最大加分[^3]。 同时需要记录每个区间的根节点位置 `root[l][r]`,以便后续构造前序遍历。 #### 2. 状态转移方程 对于区间 `[l, r]`,枚举根节点 `k`(`l <= k <= r`),则状态转移方程为: ```plaintext dp[l][r] = max(dp[l][r], dp[l][k-1] * dp[k+1][r] + d[k]) ``` 其中: - `dp[l][k-1]` 表示左子树的最高加分。 - `dp[k+1][r]` 表示右子树的最高加分。 - `d[k]` 表示当前根节点的分数。 边界条件为: - 当 `l > r` 时,表示空子树,其加分为 1。 - 当 `l == r` 时,表示叶子节点,其加分为 `d[l]`。 #### 3. 构造前序遍历 通过记录的 `root[l][r]` 数组,可以递归地构造出树的前序遍历结果。具体方法是从根节点开始,依次访问左子树和右子树。 --- ### 代码实现 以下是基于上述思路的 Python 实现: ```python def solve(): n = int(input()) # 节点个数 d = list(map(int, input().split())) # 每个节点的分数 INF = float('inf') # 初始化 dp 和 root 数组 dp = [[0] * (n + 2) for _ in range(n + 2)] root = [[0] * (n + 2) for _ in range(n + 2)] # 边界条件:空子树的加分为 1 for i in range(1, n + 2): dp[i][i - 1] = 1 # 区间 DP for length in range(1, n + 1): # 子树长度 for l in range(1, n - length + 2): # 左端点 r = l + length - 1 # 右端点 for k in range(l, r + 1): # 枚举根节点 tmp = dp[l][k - 1] * dp[k + 1][r] + d[k - 1] if tmp > dp[l][r]: dp[l][r] = tmp root[l][r] = k # 构造前序遍历 def preorder(l, r): if l > r: return "" k = root[l][r] res = str(k) res += " " + preorder(l, k - 1) res += " " + preorder(k + 1, r) return res.strip() # 输出结果 print(dp[1][n]) # 最高加分 print(preorder(1, n)) # 前序遍历 # 示例运行 solve() ``` --- ### 复杂度分析 - **时间复杂度**:O(n³),其中 `n` 是节点个数。三层循环分别枚举区间长度、左端点和根节点。 - **空间复杂度**:O(n²),用于存储 `dp` 和 `root` 数组。 --- ### 注意事项 1. 输入数据需满足目要求,确保节点编号和分数合法。 2. 记忆化搜索或动态规划均能解决问,但动态规划更直观且易于实现。 3. 在构造前序遍历时,注意处理空子树的情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值