最近在思考缓存的更新机制,各自的存在的问题及优化方案
更新数据库 更新缓存
结论 :会存在缓存读到的旧的数据,比如 A 将 num 由 100 改为了 20 还未更新缓存的时候 另一个请求B过来 将100 改成了 80 更新缓存,那么A接着更新缓存,那么缓存里就是旧的数据了,因为更新数据库和更新缓存不是一个原子操作,无法保证顺序的
那么用 更新数据库删除缓存 就不会存在这个问题
更新数据库 删除缓存
结论:产生脏数据的概率较小,但是会出现一致性的问题;若更新操作的时候,同时进行查询操作,若hit,则查询得到的数据是旧的数据。但是不会影响后面的查询。(代价较小)
删除缓存 更新数据库
结论:产生脏数据的概率较大(若出现脏数据,则意味着再不更新的情况下,查询得到的数据均为旧的数据)
比如:两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的,而且还一直这样脏下去了。
也会存在读到旧数据的问题
如何做到 高实时的更新呢,用kafka异步更新 这个会存在的问题是 如果kafka挂了,就会存在缓存和db的不一致问题
如果手动的更新表和字段,缓存无法做到更新,那么就存在不一致的问题
用订阅binlog日志这种方式,比如canal databus 可以实现高实时 ,且binlog可保证顺序
再某个时间段,再异步的方式通过redis更新DB;
735

被折叠的 条评论
为什么被折叠?



