【高等数学基础进阶】函数、极限、连续-极限-part2

常考题型与典型例题

极限的概念、性质及存在准则

例13:“对任意给定的 ϵ ∈ ( 0 , 1 ) \epsilon\in(0,1) ϵ(0,1),总存在正数 N N N,当 n > N n>N n>N时,恒有 ∣ x n − a ∣ ≤ 2 ϵ |x_{n}-a|\leq2\epsilon xna2ϵ”,是数列 { x n } \{x_{n}\} { xn}收敛于 a a a的()条件

定义中是 ∣ x n − a ∣ < ϵ 1 |x_{n}-a|<\epsilon_{1} xna<ϵ1,题目中是 ∣ x n − a ∣ ≤ 2 ϵ 2 |x_{n}-a|\leq2\epsilon_{2} xna2ϵ2
对于任意确定的 ϵ 1 \epsilon_{1} ϵ1,一定有一个 ϵ 2 \epsilon_{2} ϵ2,使 2 ϵ 2 < ϵ 1 2\epsilon_{2}<\epsilon_{1} 2ϵ2<ϵ1,充分性得证。反之同理,必要性得证

强调 ϵ \epsilon ϵ的任意性

例14:当 x → 0 x\to0 x0时,变量 1 x 2 sin ⁡ 1 x \frac{1}{x^{2}}\sin \frac{1}{x} x21sinx1是()
A:无穷小
B:无穷大
C:有界的,但不是无穷小
D:无界的,但不是无穷大

由于对于任意给定的 M > 0 M>0 M>0 δ > 0 \delta>0 δ>0,总存在
x n = 1 2 n π + π 2 , y n = 1 2 n π x_{n}=\frac{1}{2n \frac{\pi+\pi}{2}},y_{n}=\frac{1}{2n\pi} xn=2n2π+π1,yn=21
使得 0 < x n < δ , 0 < y n < δ 0<x_{n}<\delta,0<y_{n}<\delta 0<xn<δ,0<yn<δ
1 x n 2 sin ⁡ 1 x n = ( 2 n π + π 2 ) 2 > M , 1 y n 2 sin ⁡ 1 y n = 0 < M \frac{1}{x^{2}_{n}}\sin \frac{1}{x_{n}}=(2n\pi+ \frac{\pi}{2})^{2}>M,\frac{1}{y^{2}_{n}}\sin \frac{1}{y_{n}}=0<M xn21sinxn1=(2+2π)2>M,yn21sinyn1=0<M
选D

求极限

常用的求极限方法(8种)

1. 利用基本极限求极限

常用基本极限
lim ⁡ x → 0 ( 1 + x ) 1 x = e , lim ⁡ x → ∞ ( 1 + 1 x ) x = e lim ⁡ n → ∞ n n = 1 , lim ⁡ n → ∞ a n = 1 ( a > 0 ) lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = lim ⁡ x → ∞ a n x n b m x m = { a n b n , n = m 0 , n < m ∞ , n > m lim ⁡ x → 0 a n x n + a n − 1 x n − 1 + ⋯ + a p x p b m x m + b m − 1 x m − 1 + ⋯ + b q x q = lim ⁡ x → ∞ a p x p b q x q = { a q b p , n = m ∞ , n < m 0 , n > m lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 ∞ , ∣ x ∣ > 1 1 , x = 1 不存在 , x = − 1 lim ⁡ n → ∞ e n x = { 0 , x < 0 + ∞ , x > 0 1 , x = 0 \begin{gathered} \lim_{x\to0}(1+x)^{\frac{1}{x}}=e,\lim_{x\to\infty}(1+ \frac{1}{x})^{x}=e\\ \lim_{n\to \infty}\sqrt[n]{n}=1,\lim_{n\to \infty}\sqrt[n]{a}=1\quad(a>0)\\ \lim_{x\to \infty}\frac{a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0}}{b_{m}x^{m}+b_{m-1}x^{m-1}+\cdots+b_{1}x+b_{0}}=\lim_{x\to \infty}\frac{a_{n}x^{n}}{b_{m}x^{m}}=\begin{cases}\frac{a_{n}}{b_{n}},n=m \\0,n<m\\\infty,n>m\end{cases}\\ \lim_{x\to 0}\frac{a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{p}x^{p}}{b_{m}x^{m}+b_{m-1}x^{m-1}+\cdots+b_{q}x^{q}}=\lim_{x\to \infty}\frac{a_{p}x^{p}}{b_{q}x^{q}}=\begin{cases}\frac{a_{q}}{b_{p}},n=m \\\infty,n<m\\0,n>m\end{cases}\\ \lim_{n\to \infty}x^{n}=\begin{cases}0,|x|<1\\\infty,|x|>1\\1,x=1\\\text{不存在},x=-1\end{cases}\\ \lim_{n\to \infty}e^{nx}=\begin{cases}0,x<0\\+\infty,x>0\\1,x=0\end{cases} \end{gathered} x0lim(1+x)x1=e,xlim(1+x1)x=enlimnn =1,nlimna =1(a>0)xlimbmxm+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0=xlimbmxmanxn= bnan,n=m0,n<m,n>mx0limbmxm+bm1xm1++bqxqanxn+an1xn1++apxp=xlimbqxqapxp= bpaq,n=m,n<m0,n>mnlimxn= 0,x<1,x>11,x=1不存在,x=1nlimenx= 0,x<0+,x>01,x=0

关于 1 ∞ 1^{\infty} 1型极限常用结论
lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ \lim \alpha(x)=0,\lim \beta(x)=\infty limα(x)=0,limβ(x)=,且 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x)\beta(x)=A limα(x)β(x)=A,则
lim ⁡ ( 1 + α ( x ) ) β ( x ) = e A \lim(1+\alpha(x))^{\beta(x)}=e^{A} lim(1+α(x))β(x)=eA
可以归纳为以下三步

  1. 写标准形式:原式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) =\lim[1+\alpha(x)]^{\beta(x)} =lim[1+α(x)]β(x)
  2. 求极限: lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x)\beta(x)=A limα(x)β(x)=A
  3. 写结果:原式 = e A =e^{A} =eA

由于 β ( x ) → ∞ \beta(x)\to \infty β(x)可以是 + ∞ +\infty + − ∞ -\infty ,所以如果原式分子分母调换更好算,可以改变 β ( x ) \beta(x) β(x)的符号

例15: lim ⁡ n → ∞ n n + 1 ( n + 1 ) n sin ⁡ 1 n \lim\limits_{n\to \infty}\frac{n^{n+1}}{(n+1)^{n}}\sin \frac{1}{n} nlim(n+1)nnn+1sinn1

原式 = lim ⁡ n → ∞ n n ( n + 1 ) n n sin ⁡ 1 n = lim ⁡ n → ∞ 1 ( 1 + 1 n ) n sin ⁡ 1 n 1 n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值