【高等数学基础进阶】微分中值定理及导数应用

一、微分中值定理

定理1(费马引理):如果函数 f ( x ) f(x) f(x) x 0 x_{0} x0处可导,且在 x 0 x_{0} x0处取得极值,那么 f ′ ( x 0 ) = 0 f'(x_{0})=0 f(x0)=0

定理2(罗尔定理):

  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续
  • f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)可导
  • f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

定理3(拉格朗日中值定理):

  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续
  • f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)可导

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使
f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}=f'(\xi) baf(b)f(a)=f(ξ)

定理4(柯西中值定理):

  • f ( x ) , F ( x ) f(x),F(x) f(x),F(x) [ a , b ] [a,b] [a,b]上连续
  • f ( x ) , F ( x ) f(x),F(x) f(x),F(x) ( a , b ) (a,b) (a,b)可导,且 F ′ ( x ) ≠ 0 F'(x)\ne0 F(x)=0

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)

微分中值定理本质上是为了建立导数与函数的联系,因此题目中如果都是函数的条件,问导数,或者反过来,考虑使用微分中值定理

定理5(皮亚诺型余项泰勒公式)
f ( x ) f(x) f(x) x 0 x_{0} x0 n n n阶可导,那么
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\cdots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+Rn(x)
其中
R n ( x ) = o ( x − x 0 ) n , ( x → x 0 ) R_{n}(x)=o(x-x_{0})^{n},(x\to x_{0}) Rn(x)=o(xx0)n,(xx0)
x 0 = 0 x_{0}=0 x0=0,则得麦克劳林公式
f ( x ) = f ( 0 ) − f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)-f'(0)x+\frac{f''(0)}{2!}x^{2}+\cdots+\frac{f^{(n)}(0)}{n!}x^{n}+R_{n}(x) f(x)=f(0)f(0)x+2!f′′(0)x2++n!f(n)(0)xn+Rn(x)

定理6(拉格朗日型余项泰勒公式):
f ( x ) f(x) f(x)在喊 x 0 x_{0} x0的区间 ( a , b ) (a,b) (a,b) n + 1 n+1 n+1阶可导,那么对 ∀ x ∈ ( a , b ) \forall x\in(a,b) x(a,b),至少存在一个 ξ \xi ξ,使
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\cdots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+Rn(x)
其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , ξ 在 x 0 和 x 之间 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1},\xi在x_{0}和x之间 Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1,ξx0x之间

泰勒公式本质上建立了函数与高阶导数的关系,并且利用多项式逼近 f ( x ) f(x) f(x)

皮亚诺型用于研究函数的局部形态,例如极限、极值;拉格朗日型用于研究函数的整体形态,例如最值、不等式

e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) ( n − 1 ) 1 n x n + o ( x n ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) sin ⁡ x = x − x 3 3 ! + x 5 5 ! − ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n − 1 ) cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \begin{aligned} e^x&=1+x+\frac {x^2}{2!}+\cdots+\frac {x^n}{n!}+o(x^n)\\ \ln(1+x)&=x-\frac12x^2+\frac13x^3-\cdots+(-1)^{(n-1)}\frac1nx^n+o(x^n)\\ (1+x)^\alpha&=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+o(x^n)\\ \sin x&=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}+o(x^{2n-1})\\ \cos x&=1-\frac1{2!}x^2+\frac1{4!}x^4-\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+o(x^{2n}) \end{aligned} exln(1+x)(1+x)αsinxcosx=1+x+2!x2++n!xn+o(xn)=x21x2+31x3+(1)(n1)n1xn+o(xn)=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+o(xn)=x3!x3+5!x5+(1)n1(2n1)!x2n1+o(x2n1)=12!1x2+4!1x4+(1)n(2n)!x2n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值