【高等数学基础进阶】定积分与反常积分-定积分

定积分概念

定积分的定义:

∫ a b f ( x ) d x ≜ lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int^{b}_{a}f(x)dx\triangleq\lim_{\lambda\to0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i} abf(x)dxλ0limi=1nf(ξi)Δxi

注:

  1. λ → 0 \lambda\to0 λ0 n → ∞ n\to \infty n不等价
  2. ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx abf(x)dx仅与 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有关; ∫ a b f ( x ) D x = ∫ a b f ( t ) d t \int^{b}_{a}f(x)Dx=\int^{b}_{a}f(t)dt abf(x)Dx=abf(t)dt
  3. 极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \lim\limits_{\lambda\to 0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i} λ0limi=1nf(ξi)Δxi ξ i \xi_{i} ξi的取法和区间 [ a , b ] [a,b] [a,b]的分发无关
    因此,有
    ∫ 0 1 f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) \int^{1}_{0}f(x)dx=\lim_{\lambda\to0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i}=\lim_{n\to \infty} \frac{1}{n}\sum\limits^{n}_{i=1}f(\frac{i}{n}) 01f(x)dx=λ0limi=1nf(ξi)Δxi=nlimn1i=1nf(ni)

定积分存在的充分条件

  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续
  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有界且只有有限个间断点
  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上仅有有限个第一类间断点

定积分的几何意义

定积分的性质

不等式

  • f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),则 ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int^{b}_{a}f(x)dx\leq \int^{b}_{a}g(x)dx abf(x)dxabg(x)dx
  • 估值性:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq\int^{b}_{a}f(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)
  • ∫ a b f ( x ) d x ≤ ∫ a b ∣ f ( x ) ∣ d x \int^{b}_{a}f(x)dx\leq \int^{b}_{a}|f(x)|dx abf(x)dxabf(x)dx

中值定理

  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , a < ξ < b ( 此处书上写的是 a ≤ ξ ≤ b ) \int^{b}_{a}f(x)dx=f(\xi)(b-a),a<\xi<b(此处书上写的是a\leq \xi\leq b) abf(x)dx=f(ξ)(ba),a<ξ<b(此处书上写的是aξb)
    证明:
    F ( b ) − F ( a ) = 右边 = 拉格朗日中值定理 左边 = F ′ ( ξ ) ( b − a ) F(b)-F(a)=右边\overset{拉格朗日中值定理}{=}左边=F'(\xi)(b-a) F(b)F(a)=右边=拉格朗日中值定理左边=F(ξ)(ba)
  • f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续, g ( x ) g(x) g(x)不变号,则 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b d x , a ≤ ξ ≤ b \int^{b}_{a}f(x)g(x)dx=f(\xi)\int^{b}_{a}dx,a\leq \xi\leq b abf(x)g(x)dx=f(ξ)abdx,aξb

积分上限的函数

∫ a x f ( t ) d t \int^{x}_{a}f(t)dt axf(t)dt

定理:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则 ∫ a x f ( t ) d t \int^{x}_{a}f(t)dt axf(t)dt [ a , b ] [a,b] [a,b]上可导,且
( ∫ a x f ( t ) d t ) ′ = f ( x ) (\int^{x}_{a}f(t)dt)'=f(x) (axf(t)dt)=f(x)
一般结论:
( ∫ ϕ ( x ) ψ ( x ) f ( t ) d t ) ′ = f ( ψ ( x ) ) ψ ′ ( x ) − f ( ϕ ( x ) ) ϕ ′ ( x ) (\int^{\psi(x)}_{\phi(x)}f(t)dt)'=f(\psi(x))\psi'(x)-f(\phi(x))\phi'(x) (ϕ(x)ψ(x)f(t)dt)=f(ψ(x))ψ(x)f(ϕ(x))ϕ(x)

定积分的计算

  • 牛顿-莱布尼茨公式 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int^{b}_{a}f(x)dx=F(b)-F(a) abf(x)dx=F(b)F(a)
  • 换元法 ∫ a b f ( x ) d x = ∫ α β f ( ϕ ( t ) ) ϕ ′ ( t ) d t \int^{b}_{a}f(x)dx=\int^{\beta}_{\alpha}f(\phi(t))\phi'(t)dt abf(x)dx=αβf(ϕ(t))ϕ(t)dt
  • 分部积分法 ∫ a b u d v = u v ∣ a b − ∫ a b v d u \int^{b}_{a}udv=uv|^{b}_{a}-\int^{b}_{a}vdu abudv=uvababvdu
  • 利用奇偶性 ∫ − a a f ( x ) d x = { 0 , f ( x ) 为奇函数 2 ∫ 0 a f ( x ) d x f ( x ) 为偶函数 \int^{a}_{-a}f(x)dx=\begin{cases}0,&f(x)为奇函数\\2\int^{a}_{0}f(x)dx&f(x)为偶函数\end{cases} aaf(x)dx={0,20af(x)dxf(x)为奇函数f(x)为偶函数
  • 利用周期性 ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int^{a+T}_{a}f(x)dx=\int^{T}_{0}f(x)dx aa+Tf(x)dx=0Tf(x)dx
  • 利用公式
    • ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n n − 3 n − 2 ⋯ 1 2 π 2 n 为偶数 n − 1 n n − 3 n − 2 ⋯ 2 3 n 为奇数 \int^{\frac{\pi}{2}}_{0}\sin^{n}xdx=\int^{\frac{\pi}{2}}_{0}\cos^{n}xdx=\begin{cases} \frac{n-1}{n} \frac{n-3}{n-2}\cdots \frac{1}{2} \frac{\pi}{2}&n为偶数\\ \frac{n-1}{n} \frac{n-3}{n-2}\cdots \frac{2}{3}&n为奇数\end{cases} 02πsinnxdx=02πcosnxdx={nn1n2n3212πnn1n2n332n为偶数n为奇数
    • ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int^{\pi}_{0}xf(\sin x)dx=\frac{\pi}{2}\int^{\pi}_{0}f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int^{\pi}_{0}xf(\sin x)dx=\frac{\pi}{2}\int^{\pi}_{0}f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx要注意, f ( sin ⁡ x ) f(\sin x) f(sinx)指的是,能用 sin ⁡ x \sin x sinx表示的函数都可以,例如 cos ⁡ 2 x = 1 − 2 sin ⁡ 2 x \cos^{2}x=1-2\sin^{2}x cos2x=12sin2x,但 cos ⁡ x \cos x cosx就不可以,因为在 ( 0 , π ) , cos ⁡ x (0,\pi) ,\cos x (0,π),cosx有正有负, ∣ cos ⁡ x ∣ = 1 − sin ⁡ 2 x |\cos x|=\sqrt{1-\sin^{2} x} cosx=1sin2x ,而 cos ⁡ x ≠ 1 − sin ⁡ 2 x \cos x\ne \sqrt{1-\sin^{2} x} cosx=1sin2x

常考题型与典型例题

定积分的概念、性质与几何意义

例1: lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) = ( ) \lim\limits_{n\to \infty}(\frac{1}{n+1}+ \frac{1}{n+2}+\cdots+ \frac{1}{n+n})=() nlim(n+11+n+21++n+n1)=()

对于 ∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( ξ i ) ( b − a ) \int^{b}_{a}f(x)dx=\lim\limits_{\lambda\to0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i}=\lim\limits_{n\to \infty} \frac{1}{n}\sum\limits^{n}_{i=1}f(\xi_{i})(b-a) abf(x)dx=λ0limi=1nf(ξi)Δxi=nlimn1i=1nf(ξi)(ba)
上式当区间方法选择 n n n等分时成立,由于此时 Δ x i = b − a n \Delta x_{i}= \frac{b-a}{n} Δxi=nba
所以当提出 1 n \frac{1}{n} n1时,通过 f ( ξ i ) ( b − a ) f(\xi_{i})(b-a) f(ξi)(ba)就可以看出积分区间和被积函数

原式 = lim ⁡ n → ∞ 1 n ( 1 1 + 1 n + 1 1 + 2 n + ⋯ + 1 1 + n n ) = ∫ 0 1 1 1 + x d x = ln ⁡ ( 1 + x ) ∣ 0 1 = ln ⁡ 2 \begin{aligned} 原式&=\lim_{n\to \infty} \frac{1}{n}( \frac{1}{1+\frac{1}{n}}+ \frac{1}{1+\frac{2}{n}}+\cdots+ \frac{1}{1+\frac{n}{n}})\\ &=\int^{1}_{0} \frac{1}{1+x}dx\\ &=\ln(1+x)|^{1}_{0}\\ &=\ln2 \end{aligned} 原式=nlimn1(1+n11+1+n21++1+nn1)=011+x1dx=ln(1+x)01=ln2

本题 1 1 + 1 n , 1 1 + 2 n , ⋯   , 1 1 + n n \frac{1}{1+\frac{1}{n}},\frac{1}{1+\frac{2}{n}},\cdots,\frac{1}{1+\frac{n}{n}} 1+n11,1+n21,,1+nn1显然只有 1 n , 2 n , ⋯   , n n \frac{1}{n},\frac{2}{n},\cdots,\frac{n}{n} n1,n2,,nn在变化,因此被积函数为 1 1 + x \frac{1}{1+x} 1+x1积分区间为 1 n \frac{1}{n} n1 n n \frac{n}{n} nn,即 ( 0 , 1 ) (0,1) (0,1)

例2: lim ⁡ n → ∞ n ( 1 1 + n 2 + 1 2 2 + n 2 + ⋯ + 1 n 2 + n 2 ) = ( ) \lim\limits_{n\to \infty}n(\frac{1}{1+n^{2}}+ \frac{1}{2^{2}+n^{2}}+\cdots+ \frac{1}{n^{2}+n^{2}})=() nlimn(1+n21+22+n21++n2+n21)=()

原式 = lim ⁡ n → ∞ 1 n [ 1 1 + ( 1 n ) 2 + 1 1 + ( 2 n ) 2 + ⋯ + 1 1 + ( n n ) 2 ] = ∫ 0 1 1 1 + x 2 d x = arctan ⁡ x ∣ 0 1 = π 4 \begin{aligned} 原式&=\lim\limits_{n\to\infty} \frac{1}{n}[\frac{1}{1+(\frac{1}{n})^{2}}+ \frac{1}{1+(\frac{2}{n})^{2}}+\cdots+ \frac{1}{1+(\frac{n}{n})^{2}}]\\ &=\int^{1}_{0} \frac{1}{1+x^{2}}dx\\ &=\arctan x|^{1}_{0}\\ &=\frac{\pi}{4} \end{aligned} 原式=nlimn1[1+(n1)21+1+(n2)21++1+(nn)21]=011+x21dx=arctanx01=4π

关于 n n n项和的极限用什么,例如本题分母不变项变化的叫做主体即 n 2 n^{2} n2,变化的叫变体即 1 2 , 2 2 , ⋯   , n 2 1^{2},2^{2},\cdots,n^{2} 12,22,,n2,如果 变体 主体 ⟶ n → ∞ { 0 夹逼原理 ≠ 0 定积分定义 \frac{变体}{主体}\overset{n\to \infty}{\longrightarrow}\begin{cases}0&夹逼原理\\\ne0&定积分定义\end{cases} 主体变体n{0=0夹逼原理定积分定义

例3:如图,连续函数 y = f ( x ) y=f(x) y=f(x)在区间 [ − 3 , − 2 ] , [ 2 , 3 ] [-3,-2],[2,3] [3,2],[2,3]上的图形分别是直径为 1 1 1的上、下半圆周,在区间 [ − 2 , 0 ] , [ 0 , 2 ] [-2,0],[0,2] [2,0],[0,2]的图形分别是直径为 2 2 2的下、上半圆周。设 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int^{x }_{0}f(t)dt F(x)=0xf(t)dt,则证明 F ( − 3 ) = 3 4 F ( 2 ) F(-3)= \frac{3}{4}F(2) F(3)=43F(2)
![[附件/Pasted image 20220827164059.png|250]]

F ( 3 ) = F ( − 3 ) = ∫ 0 3 f ( x ) d x = π 2 − π 2 ( 1 2 ) 2 F ( 2 ) = ∫ 0 2 f ( x ) d x = π 2 \begin{aligned} F(3)&=F(-3)=\int^{3 }_{0}f(x)dx=\frac{\pi}{2}- \frac{\pi}{2}\left(\frac{1}{2}\right)^{2}\\ F(2)&=\int^{2 }_{0}f(x)dx=\frac{\pi}{2} \end{aligned} F(3)F(2)=F(3)=03f(x)dx=2π2π(21)2=02f(x)dx=2π
得证

补充一个结论
f ( x ) f(x) f(x)是奇函数 → ∫ a x f ( t ) d t \rightarrow\int^{x }_{a}f(t)dt axf(t)dt偶函数
f ( x ) f(x) f(x)是偶函数 → ∫ 0 x f ( t ) d t \rightarrow\int^{x }_{0}f(t)dt 0xf(t)dt奇函数

例4:设二阶可导函数 f ( x ) f(x) f(x)满足 f ( 1 ) = f ( − 1 ) = 1 , f ( 0 ) = − 1 f(1)=f(-1)=1,f(0)=-1 f(1)=f(1)=1,f(0)=1,且 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0,证明 ∫ − 1 0 f ( x ) d x \int^{0 }_{-1}f(x)dx 10f(x)dx

用几何法,选一个特殊函数 f ( x ) = 2 x 2 − 1 f(x)=2x^{2}-1 f(x)=2x21即可,或者自行画图,只要满足 f ( 1 ) = f ( − 1 ) = 1 , f ( 0 ) = − 1 f(1)=f(-1)=1,f(0)=-1 f(1)=f(1)=1,f(0)=1,且为凹函数(由于 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0

例5:设函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续, ( 0 , 1 ) (0,1) (0,1)内可导,且 3 ∫ 2 3 1 f ( x ) d x = f ( 0 ) 3\int^{1 }_{\frac{2}{3}}f(x)dx=f(0) 3321f(x)dx=f(0),证明在 ( 0 , 1 ) (0,1) (0,1)内存在一点 c c c,使 f ′ ( c ) = 0 f'(c)=0 f(c)=0

f ( 0 ) = 3 ∫ 2 3 1 f ( x ) d x = 3 ( 1 − 2 3 ) f ( ξ ) = f ( ξ ) , ξ ∈ ( 2 3 , 1 ) \begin{aligned} f(0)=3\int^{1 }_{\frac{2}{3}}f(x)dx=3(1- \frac{2}{3})f(\xi)=f(\xi),\xi\in(\frac{2}{3},1) \end{aligned} f(0)=3321f(x)dx=3(132)f(ξ)=f(ξ),ξ(32,1)
因此,存在一点 c ∈ ( 0 , ξ ) c\in(0,\xi) c(0,ξ)使 f ′ ( c ) = 0 f'(c)=0 f(c)=0

定积分计算

例6: ∫ − π 2 π 2 ( x 3 + sin ⁡ 2 x ) cos ⁡ 2 x d x = ( ) \int^{\frac{\pi}{2} }_{- \frac{\pi}{2}}(x^{3}+\sin^{2}x)\cos^{2}xdx=() 2π2π(x3+sin2x)cos2xdx=()

原式 = 2 ∫ − π 2 π 2 sin ⁡ 2 x cos ⁡ 2 x d x = 2 ∫ 0 π 2 sin ⁡ 2 x ( 1 − sin ⁡ 2 x ) d x = 2 ( 1 2 π 2 − 3 4 1 2 π 2 ) = π 8 \begin{aligned} 原式&=2\int^{\frac{\pi}{2} }_{- \frac{\pi}{2}}\sin^{2}x\cos^{2}xdx\\ &=2\int^{\frac{\pi}{2} }_{0}\sin^{2}x(1-\sin^{2}x)dx\\ &=2(\frac{1}{2} \frac{\pi}{2}- \frac{3}{4} \frac{1}{2} \frac{\pi}{2})\\ &=\frac{\pi}{8} \end{aligned} 原式=22π2πsin2xcos2xdx=202πsin2x(1sin2x)dx=2(212π43212π)=8π

例7: ∫ − π π ( sin ⁡ 3 x + π 2 − x 2 ) d x \int^{\pi }_{-\pi}(\sin^{3}x+\sqrt{\pi^{2}-x^{2}})dx ππ(sin3x+π2x2 )dx=()

有公式 ∫ 0 a a 2 − x 2 d x = π 4 a 2 \int^{a }_{0}\sqrt{a^{2}-x^{2}dx}=\frac{\pi}{4}a^{2} 0aa2x2dx =4πa2
画图 x 2 + y 2 = a 2 x^{2}+y^{2}=a^{2} x2+y2=a2第一象限面积即为所求
偏心圆有 ∫ 0 a 2 a x − x 2 d x = π 4 a 2 \int^{a }_{0}\sqrt{2ax-x ^{2}}dx=\frac{\pi}{4}a ^{2} 0a2axx2 dx=4πa2

原式 = 2 ∫ 0 π π − x 2 d x = 2 π 4 π 2 = π 3 2 \begin{aligned} 原式&=2\int^{\pi }_{0}\sqrt{\pi-x^{2}}dx\\ &=2 \frac{\pi}{4}\pi^{2}\\ &=\frac{\pi^{3}}{2} \end{aligned} 原式=20ππx2 dx=24ππ2=2π3

例8: ∫ 0 1 2 x − x 2 d x = ( ) \int^{1 }_{0}\sqrt{2x-x^{2}}dx=() 012xx2 dx=()

原式 = ∫ 0 1 1 − ( x − 1 ) 2 d x = x − 1 = sin ⁡ t ∫ − π 2 0 cos ⁡ 1 t d t = ∫ 0 π 2 cos ⁡ 2 t d t = 1 2 π 2 = π 4 \begin{aligned} 原式&=\int^{1 }_{0}\sqrt{1-(x-1)^{2}}dx\\ &\overset{x-1=\sin t}{=}\int^{0 }_{- \frac{\pi}{2}}\cos ^{1}tdt\\ &=\int^{\frac{\pi}{2} }_{0}\cos ^{2}tdt\\ &=\frac{1}{2} \frac{\pi}{2}\\ &=\frac{\pi}{4} \end{aligned} 原式=011(x1)2 dx=x1=sint2π0cos1tdt=02πcos2tdt=212π=4π
或者用 ∫ 0 a 2 a x − x 2 d x = π 4 a 2 \int^{a }_{0}\sqrt{2ax-x ^{2}}dx=\frac{\pi}{4}a ^{2} 0a2axx2 dx=4πa2直接得到结果

例9:计算 ∫ 0 1 x arcsin ⁡ x d x \int^{1 }_{0}x \arcsin xdx 01xarcsinxdx

原式 = 1 2 ∫ 0 1 arcsin ⁡ x d x 2 = 1 2 x 2 arcsin ⁡ x ∣ 0 1 − 1 2 ∫ 0 1 x 2 1 − x 2 d x 不是出现了 x 2 就可以换 x 2 换完 d x 也要换 这里也可以选择令 x = sin ⁡ t 三角换元的方法 = 1 2 x 2 arcsin ⁡ x ∣ 0 1 − 1 2 ∫ 0 1 x 2 − 1 + 1 1 − x 2 d x = π 4 − 1 2 ( − ∫ 0 1 1 − x 2 d x + arcsin ⁡ ∣ 0 1 ) = π 4 − 1 2 ( − π 4 + π 2 ) = π 8 \begin{aligned} 原式&=\frac{1}{2}\int^{1 }_{0}\arcsin xdx^{2}\\ &=\frac{1}{2}x^{2}\arcsin x \Big|^{1 }_{0}- \frac{1}{2}\int^{1 }_{0} \frac{x^{2}}{\sqrt{1-x ^{2}}}dx\\ &不是出现了x ^{2}就可以换x ^{2}换完dx也要换\\ &这里也可以选择令x=\sin t三角换元的方法\\ &=\frac{1}{2}x^{2}\arcsin x \Big|^{1 }_{0}- \frac{1}{2}\int^{1 }_{0} \frac{x^{2}-1+1}{\sqrt{1-x ^{2}}}dx\\ &=\frac{\pi}{4}- \frac{1}{2}\left(-\int^{1 }_{0}\sqrt{1-x^{2}dx+\arcsin \Big|^{1 }_{0}}\right)\\ &=\frac{\pi}{4}- \frac{1}{2}\left(- \frac{\pi}{4}+ \frac{\pi}{2}\right)\\ &= \frac{\pi}{8} \end{aligned} 原式=2101arcsinxdx2=21x2arcsinx 0121011x2 x2dx不是出现了x2就可以换x2换完dx也要换这里也可以选择令x=sint三角换元的方法=21x2arcsinx 0121011x2 x21+1dx=4π21(011x2dx+arcsin 01 )=4π21(4π+2π)=8π

例10:设 f ( x ) = ∫ 0 x sin ⁡ t π − t d t f(x)=\int^{x }_{0} \frac{\sin t}{\pi-t}dt f(x)=0xπtsintdt,计算 ∫ 0 π f ( x ) d x \int^{\pi }_{0}f(x)dx 0πf(x)dx

这类题经常 f ( x ) f(x) f(x)是积不出的积分,所以考虑导数,在分布积分中有导数

原式 = x f ( x ) ∣ 0 π − ∫ 0 π x sin ⁡ x π − x d x = π ∫ 0 π sin ⁡ t π − t d t − ∫ 0 π x sin ⁡ x π − x d x = ∫ 0 π ( π − x ) sin ⁡ x π − x d x = ∫ 0 π sin ⁡ x d x = 2 \begin{aligned} 原式&=xf(x)\Big|^{\pi }_{0}-\int^{\pi }_{0}\frac{x \sin x}{\pi-x}dx\\ &=\pi \int^{\pi }_{0}\frac{\sin t}{\pi -t}dt-\int^{\pi }_{0}\frac{x \sin x}{\pi -x}dx\\ &=\int^{\pi }_{0}\frac{(\pi -x)\sin x}{\pi -x}dx\\ &=\int^{\pi }_{0}\sin xdx\\ &=2 \end{aligned} 原式=xf(x) 0π0ππxxsinxdx=π0ππtsintdt0ππxxsinxdx=0ππx(πx)sinxdx=0πsinxdx=2
仔细观察,可以有如下变化简化计算
原式 = ∫ 0 π f ( x ) d ( x − π ) = ( x − π ) f ( x ) ∣ 0 π − ∫ 0 π ( x − π ) sin ⁡ x π − x d x 这样的好处是 ( x − π ) f ( x ) ∣ 0 π 上下限都为 0 , 只需要计算后面的积分即可 = ∫ 0 π sin ⁡ x d x = 2 \begin{aligned} 原式&=\int^{\pi }_{0}f(x)d(x-\pi )\\ &=(x-\pi )f(x)\Big|^{\pi }_{0}-\int^{\pi }_{0}\frac{(x-\pi )\sin x}{\pi -x}dx\\ &这样的好处是(x-\pi )f(x)\Big|^{\pi }_{0}上下限都为0,只需要计算后面的积分即可\\ &=\int^{\pi }_{0}\sin xdx\\ &=2 \end{aligned} 原式=0πf(x)d(xπ)=(xπ)f(x) 0π0ππx(xπ)sinxdx这样的好处是(xπ)f(x) 0π上下限都为0,只需要计算后面的积分即可=0πsinxdx=2
当然,二重积分交换一下积分次序也可以

变上限定积分

例11:设 f ( x ) f(x) f(x)连续,试求下列函数的导数
∫ e x x 2 f ( t ) d t \int^{x^{2} }_{e^{x}}f(t)dt exx2f(t)dt
( ∫ e x x 2 f ( t ) d t ) ′ = f ( x 2 ) ⋅ 2 x − f ( e x ) e x \begin{aligned} \left(\int^{x^{2} }_{e^{x}}f(t)dt\right)'&=f(x ^{2})\cdot 2x-f(e^{x})e^{x}\\ \end{aligned} (exx2f(t)dt)=f(x2)2xf(ex)ex
∫ 0 x ( x − t ) f ( t ) d t \int^{x }_{0}(x-t)f(t)dt 0x(xt)f(t)dt
∫ 0 x ( x − t ) f ( t ) d t = x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t ( ∫ 0 x ( x − t ) f ( t ) d t ) ′ = ∫ 0 x f ( t ) d t + x f ( x ) − x f ( x ) = ∫ 0 x f ( t ) d t \begin{aligned} \int^{x }_{0}(x-t)f(t)dt & =x \int^{x }_{0}f(t)dt-\int^{x }_{0}tf(t)dt\\ \left(\int^{x }_{0}(x-t)f(t)dt\right)'&=\int^{x }_{0}f(t)dt+xf(x)-xf(x)=\int^{x }_{0}f(t)dt \end{aligned} 0x(xt)f(t)dt(0x(xt)f(t)dt)=x0xf(t)dt0xtf(t)dt=0xf(t)dt+xf(x)xf(x)=0xf(t)dt
∫ 0 x cos ⁡ ( x − t ) 2 d t \int^{x }_{0}\cos (x-t)^{2}dt 0xcos(xt)2dt
∫ 0 x cos ⁡ ( x − t ) 2 d t = x − t = u ∫ x 0 cos ⁡ u 2 ( − d u ) = ∫ 0 x cos ⁡ u 2 d u ( ∫ 0 x cos ⁡ ( x − t ) 2 d t ) ′ = cos ⁡ x 2 \begin{aligned} \int^{x }_{0}\cos (x-t)^{2}dt &\overset{x-t=u}{=}\int^{0 }_{x}\cos u^{2}(-du)=\int^{x }_{0}\cos u^{2}du\\ \left(\int^{x }_{0}\cos (x-t)^{2}dt\right)'&=\cos x^{2} \end{aligned} 0xcos(xt)2dt(0xcos(xt)2dt)=xt=ux0cosu2(du)=0xcosu2du=cosx2
∫ 1 2 f ( x + t ) d t \int^{2 }_{1}f(x+t)dt 12f(x+t)dt
∫ 1 2 f ( x + t ) d t = x + t = u ∫ x + 1 x + 2 f ( u ) d u ( ∫ 1 2 f ( x + t ) d t ) ′ = f ( x + 2 ) − f ( x + 1 ) \begin{aligned} \int^{2 }_{1}f(x+t)dt &\overset{x+t=u}{=}\int^{x+2 }_{x+1}f(u)du\\ \left(\int^{2 }_{1}f(x+t)dt\right)'&=f(x+2)-f(x+1) \end{aligned} 12f(x+t)dt(12f(x+t)dt)=x+t=ux+1x+2f(u)du=f(x+2)f(x+1)

例12:设 f ( x ) f(x) f(x)连续,则 d d x ∫ 0 x t f ( x 2 − t 2 ) d t = ( ) \frac{d}{dx}\int^{x}_{0}tf(x ^{2}-t^{2})dt=() dxd0xtf(x2t2)dt=()

∫ 0 x t f ( x 2 − t 2 ) d t = x 2 − t 2 = u ∫ x 2 0 f ( u ) ( − 1 2 d u ) = 1 2 ∫ 0 x 2 f ( u ) d u d d x ∫ 0 x t f ( x 2 − t 2 ) d t = 1 2 f ( x 2 ) ⋅ 2 x = x f ( x 2 ) \begin{aligned} \int^{x}_{0}tf(x ^{2}-t ^{2})dt &\overset{x ^{2}- t ^{2}=u}{=}\int^{0}_{x ^{2}}f(u)(- \frac{1}{2}du)\\ &=\frac{1}{2}\int^{x ^{2}}_{0}f(u)du\\ \frac{d}{dx}\int^{x}_{0}tf(x ^{2}-t^{2})dt&=\frac{1}{2}f(x ^{2})\cdot 2x=xf(x ^{2}) \end{aligned} 0xtf(x2t2)dtdxd0xtf(x2t2)dt=x2t2=ux20f(u)(21du)=210x2f(u)du=21f(x2)2x=xf(x2)

例13:设 x ≥ − 1 x \geq -1 x1,求 ∫ − 1 x ( 1 − ∣ t ∣ ) d t \int^{x}_{-1}(1-|t|)dt 1x(1t)dt

∫ − 1 x ( 1 − ∣ t ∣ ) d t = { ∫ − 1 x ( 1 + t ) d t − 1 ≤ x < 0 ∫ − 1 0 ( 1 + t ) d t + ∫ 0 x ( 1 − t ) d t x ≥ 0 = { 1 2 ( 1 + x ) 2 − 1 ≤ x < 0 1 − 1 2 ( 1 − x ) 2 x ≥ 0 \begin{aligned} \int^{x}_{-1}(1-|t|)dt&=\begin{cases} \int^{x}_{-1}(1+t)dt&-1\leq x<0\\ \int^{0}_{-1}(1+t)dt+\int^{x}_{0}(1-t)dt&x \geq 0 \end{cases}\\ &=\begin{cases} \frac{1}{2}(1+x)^{2}&-1\leq x<0\\ 1- \frac{1}{2}(1-x)^{2}&x \geq 0 \end{cases} \end{aligned} 1x(1t)dt={1x(1+t)dt10(1+t)dt+0x(1t)dt1x<0x0={21(1+x)2121(1x)21x<0x0

例14:设函数 f ( x ) = { sin ⁡ x 0 ≤ x < π 2 π ≤ x ≤ 2 π , F ( x ) = ∫ 0 x f ( t ) d t f(x)=\begin{cases}\sin x&0 \leq x<\pi \\2&\pi \leq x\leq2\pi \end{cases},F(x)=\int^{x}_{0}f(t)dt f(x)={sinx20x<ππx2π,F(x)=0xf(t)dt,说明 F ( x ) F(x) F(x) x = π x=\pi x=π可导

分段函数定积分如果分多段注意不要漏前面的

F ( x ) = { ∫ 0 x sin ⁡ t d t 0 ≤ x < π ∫ 0 π sin ⁡ t d t + ∫ π x 2 d t π ≤ x ≤ 2 π = { 1 − cos ⁡ x 0 ≤ x < π 2 + 2 ( x − π ) π ≤ x ≤ 2 π \begin{aligned} F(x)&=\left\{\begin{aligned}& \int^{x}_{0}\sin tdt&0\leq x<\pi\\ &\int^{\pi}_{0}\sin tdt+\int^{x}_{\pi}2dt&\pi\leq x\leq2\pi \end{aligned}\right.\\ &=\left\{\begin{aligned}&1-\cos x&0\leq x<\pi\\ &2+2(x-\pi)&\pi \leq x \leq 2 \pi\end{aligned}\right. \end{aligned} F(x)= 0xsintdt0πsintdt+πx2dt0x<ππx2π={1cosx2+2(xπ)0x<ππx2π

F ( π − 0 ) = 2 = F ( π + 0 ) = F ( π ) F(\pi-0)=2=F(\pi+0)=F(\pi) F(π0)=2=F(π+0)=F(π)
因此 F ( x ) F(x) F(x) x = π x=\pi x=π连续
F + ′ ( π ) = [ 2 + 2 ( x − π ) ] ′ ∣ x = π = 2 F − ′ ( π ) = lim ⁡ x → π − 1 − cos ⁡ x − 2 x − π = lim ⁡ x → π − sin ⁡ x 1 = 0 \begin{aligned} F'_{+}(\pi)&=[2+2(x-\pi)]'\Big|^{}_{x=\pi}=2\\ F'_{-}(\pi)&=\lim\limits_{x\to \pi^{-}}\frac{1-\cos x-2}{x-\pi}=\lim\limits_{x\to \pi^{-}}\frac{\sin x}{1}=0 \end{aligned} F+(π)F(π)=[2+2(xπ)] x=π=2=xπlimxπ1cosx2=xπlim1sinx=0
F ( x ) F(x) F(x) x = 0 x=0 x=0不可导

例15:确定常数 a , b , c a,b,c a,b,c的值,使 lim ⁡ x → 0 a x − sin ⁡ x ∫ b x ln ⁡ ( 1 + t 3 ) t d t = c ( c ≠ 0 ) \lim\limits_{x\to0}\frac{ax-\sin x}{\int^{x}_{b}\frac{\ln (1+t^{3})}{t}dt}=c(c \ne 0) x0limbxtln(1+t3)dtaxsinx=c(c=0)

由于 c ≠ 0 , a x − sin ⁡ x → 0 c\ne0,ax-\sin x\to0 c=0,axsinx0
∫ b x ln ⁡ ( 1 + t 3 ) d t t → 0 ⇒ ∫ b 0 ln ⁡ ( 1 + t 3 ) t d t = 0 \int^{x}_{b}\frac{\ln (1+t^{3})dt}{t}\rightarrow 0\Rightarrow \int^{0}_{b}\frac{\ln (1+t^{3})}{t}dt=0 bxtln(1+t3)dt0b0tln(1+t3)dt=0
易验证 ln ⁡ ( 1 + t 3 ) t > 0 \frac{\ln (1+t^{3})}{t}>0 tln(1+t3)>0,有
b = 0 b=0 b=0
因此
c = lim ⁡ x → 0 a x − sin ⁡ x ∫ 0 x ln ⁡ ( 1 + t 3 ) t d t = lim ⁡ x → 0 a − cos ⁡ x ln ⁡ ( 1 + t 3 ) x = lim ⁡ x → 0 a − cos ⁡ x x 2 \begin{aligned} c&=\lim\limits_{x\to0}\frac{ax-\sin x}{\int^{x}_{0}\frac{\ln (1+t^{3})}{t}dt}\\ &=\lim\limits_{x\to0}\frac{a-\cos x}{\frac{\ln (1+t^{3})}{x}}\\ &=\lim\limits_{x\to0}\frac{a-\cos x}{x^{2}} \end{aligned} c=x0lim0xtln(1+t3)dtaxsinx=x0limxln(1+t3)acosx=x0limx2acosx
由于分母 x 2 → 0 x^{2}\to 0 x20,如果分子 a − 1 ≠ 0 a-1\ne 0 a1=0则原式 → ∞ \to \infty 矛盾,因此 a = 1 a=1 a=1
上式 = lim ⁡ x → 0 1 − cos ⁡ x x 2 = 1 2 = c 上式=\lim\limits_{x\to0}\frac{1-\cos x}{x ^{2}}=\frac{1}{2}=c 上式=x0limx21cosx=21=c

例16:求极限 lim ⁡ x → 0 + ∫ 0 x x − t e t d t x 3 \begin{aligned}\lim\limits_{x\to0+}\frac{\int^{x}_{0}\sqrt{x-t}e^{t}dt}{\sqrt{x ^{3}}}\end{aligned} x0+limx3 0xxt etdt

定积分中如果 x x x被看做常数,则可以提出来, e x e^{x} ex也是

∫ 0 x x − t e t d t = x − t = u ∫ x 0 u e x − u ( − d u ) = e x ∫ 0 x u e − u d u 原式 = lim ⁡ x → 0 + e x ∫ 0 x u e − u d u x 3 = lim ⁡ x → 0 + x e − x 3 2 x = 2 3 \begin{aligned} \int^{x}_{0}\sqrt{x-t}e^{t}dt &\overset{x-t=u}{=}\int^{0}_{x}\sqrt{u}e^{x-u}(-du)=e^{x}\int^{x}_{0}\sqrt{u}e^{-u}du\\ 原式&=\lim\limits_{x\to0+}\frac{e^{x}\int^{x}_{0}\sqrt{u}e^{-u}du}{\sqrt{x ^{3}}}=\lim\limits_{x\to0+}\frac{\sqrt{x}e^{-x}}{\frac{3}{2}\sqrt{x}}=\frac{2}{3} \end{aligned} 0xxt etdt原式=xt=ux0u exu(du)=ex0xu eudu=x0+limx3 ex0xu eudu=x0+lim23x x ex=32
也可以考虑积分中值定理,即 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \begin{aligned}\int^{b}_{a}f(x)g(x)dx=f(\xi )\int^{b}_{a}g(x)dx\end{aligned} abf(x)g(x)dx=f(ξ)abg(x)dx

注意该积分中值定理要求 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)连续,且 g ( x ) g(x) g(x)不变号

原式 = lim ⁡ x → 0 + e ξ ∫ 0 x x − t d t x 3 = lim ⁡ x → 0 + − 2 3 ( x − t ) 3 2 ∣ 0 x x 3 = lim ⁡ x → 0 + 2 3 x 3 2 x 3 2 = 2 3 \begin{aligned} 原式&=\lim\limits_{x\to0+}\frac{e^{\xi }\int^{x}_{0}\sqrt{x-t}dt}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{- \frac{2}{3}(x-t)^{\frac{3}{2}}\Big|^{x}_{0}}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{\frac{2}{3}x^{\frac{3}{2}}}{x^{\frac{3}{2}}}\\ &=\frac{2}{3} \end{aligned} 原式=x0+limx3 eξ0xxt dt=x0+limx3 32(xt)23 0x=x0+limx2332x23=32

例17:设可导函数 y = y ( x ) y=y(x) y=y(x)由方程 ∫ 0 x + y e − t 2 d t = ∫ 0 x x sin ⁡ t 2 d t \begin{aligned}\int^{x+y}_{0}e^{-t^{2}}dt=\int^{x}_{0}x \sin t^{2}dt\end{aligned} 0x+yet2dt=0xxsint2dt确定,则 d y d x ∣ x = 0 = ( ) \begin{aligned} \frac{dy}{dx}\Big|^{}_{x=0}=()\end{aligned} dxdy x=0=()

∫ 0 x + y e − t 2 d t = ∫ 0 x x sin ⁡ t 2 d t 对两边同时求导 e − ( x + y ) 2 ( 1 + y ′ ) = ∫ 0 x sin ⁡ t 2 d t + x sin ⁡ x 2 \begin{align} \int^{x+y}_{0}e^{-t^{2}}dt&=\int^{x}_{0}x \sin t^{2}dt\quad 对两边同时求导\\ e^{-(x+y)^{2}}(1+y')&=\int^{x}_{0}\sin t^{2}dt+x \sin x^{2}\tag{1} \end{align} 0x+yet2dte(x+y)2(1+y)=0xxsint2dt对两边同时求导=0xsint2dt+xsinx2(1)
显然需要 x = 0 x=0 x=0时, y y y的值,令 x = 0 x=0 x=0,代入题中的式子
∫ 0 y e − t 2 d t = 0 ⇒ y = 0 \int^{y}_{0}e^{-t^{2}}dt=0 \Rightarrow y=0 0yet2dt=0y=0

被积函数大于零,积分结果为零,则积分区间长度一定为 0 0 0

x = 0 , y = 0 x=0,y=0 x=0,y=0,代入 ( 1 ) (1) (1)
1 + y ′ ( 0 ) = 0 ⇒ y ′ ( 0 ) = − 1 \begin{aligned} 1+y'(0)=0 \Rightarrow y'(0)=-1 \end{aligned} 1+y(0)=0y(0)=1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值