根据给定的序列,判断是否符合这个n次多项式的模型。

就是对于一个n次序列:

例如f(i)=a0+a1*i+(a2*(i^2))+(a3*(i^3))+.......+(an-1*(i^(n-1)))+(an*(i^n));

给出前x个数,怎么判断这x个数的n次式是否合理:

k次多项式的k+1阶差分都是零。然后k阶差分就不全是0;

实际解决办法是:当给你的数的个数x<=n的时候就是合理的;

                                                         x>=n的时候k阶差分就不全是0:k+1阶差分都是零

例题:

https://ac.nowcoder.com/acm/contest/102460/B

这是我的答案:

#include <iostream>
#include <vector>
#include<cstring>
using namespace std;
int main() {
	int n;
	cin>>n;
	int brr[200][6];
	memset(brr,0,sizeof(brr));
	for(int i=0; i<n; i++)cin>>brr[i][0];
	if(n<=4)cout<<"YES";
	else if(n>=5) {
		int r=0;
		int ji=0;
		while(1) {
			for(int i=0; i<n-1; i++) {
				brr[i][ji+1]=brr[i+1][ji]-brr[i][ji];
			}

			ji++;
			r++;
			if(r==4) {
				bool p=false;
				for(int i=0; i<n-4; i++)if(brr[i][ji]!=0)p=true;
				if(!p) {
					cout<<"NO";
					return 0;
				}
			}
			if(r==5) {
				bool p=true;
				for(int i=0; i<n-5; i++) {
					if(brr[i][ji]!=0) {
						p=false;
						break;
					}
				}

                if(p)cout<<"YES";
                else cout<<"NO";
				return 0;
			}
		}

	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值