Tesseract-OCR的简单使用与训练

原文地址

Tesseract,一款由HP实验室开发由Google维护的开源OCR(Optical Character Recognition , 光学字符识别)引擎,与Microsoft Office Document Imaging(MODI)相比,我们可以不断的训练的库,使图像转换文本的能力不断增强;如果团队深度需要,还可以以它为模板,开发出符合自身需求的OCR引擎。

源码地址为:https://github.com/tesseract-ocr/tesseract

EXE可执行文件地址:http://download.csdn.net/download/whatday/7740469

接下来,我们将在Windows环境下安装Tesseract并实现简单的转换和训练:

1、Tesseract实现

大体流程:Tesseract安装 -> 打开命令行 -> 生成目标文件

Tesseract安装

下载tesseract-ocr-setup-3.02.02.exe安装包,安装成功后会在相应磁盘下有Tesseract-OCR文件夹,如图

 

打开命令行

打开命令行,输入tesseract,回车;以下便是tesseract的大体面貌:

 

生成目标文件

先准备一张图片文件,如test.png

 

将命令行切换至目标图像文件目录,比如我们转换文件为test.png(图片文件允许多种格式),位于C:\Users\Lian\Desktop\test;然后在命令行中输入

tesseract test.png output_1 –l eng

【语法】:  tesseract imagename outputbase [-l lang] [-psm pagesegmode] [configfile…]

imagename为目标图片文件名,需加格式后缀;outputbase是转换结果文件名;lang是语言名称(在Tesseract-OCR中tessdata文件夹可看到以eng开头的语言文件eng.traineddata),如不标-l eng则默认为eng。

 

打开文件output_1.txt,发现tesseract成功的将图像转换成152408

 

可喜可贺,说明老牌名将tesseract还是很强的!但是还是有点不够准确,那么我们有没有什么办法能提高tesseract识别字符准确率呢?接下来,我们将使用配套训练工具jTessBoxEditor来训练样本,来提高我们的准确率!

 

2、Tesseract训练:

大体流程为:安装jTessBoxEditor -> 获取样本文件 -> Merge样本文件 –> 生成BOX文件 -> 定义字符配置文件 -> 字符矫正 -> 执行批处理文件 -> 将生成的traineddata放入tessdata中

安装jTessBoxEditor

下载jTessBoxEditor,地址https://sourceforge.net/projects/vietocr/files/jTessBoxEditor/;解压后得到jTessBoxEditor,由于这是由Java开发的,所以我们应该确保在运行jTessBoxEditor前先安装JRE(Java Runtime Environment,Java运行环境)。

获取样本文件

我们可以用画图工具绘制样本文件,数量越多越好,我自己画了5张图,如图:

【注意】:样本图像文件格式必须为tif\tiff格式,否则在Merge样本文件的过程中会出现 Couldn’t Seek 的错误。

 

 

 

Merge样本文件

打开jTessBoxEditor,Tools->Merge TIFF,将样本文件全部选上,并将合并文件保存为num.font.exp0.tif

生成BOX文件

打开命令行并切换至num.font.exp0.tif所在目录,输入,生成文件名为num.font.exp0.box

tesseract num.font.exp0.tif num.font.exp0 batch.nochop makebox

【语法】:tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox  

lang为语言名称,fontname为字体名称,num为序号;在tesseract中,一定要注意格式。

定义字符配置文件

在目标文件夹内生成一个名为font_properties的文本文件,内容为

font 0 0 0 0 0  

【语法】:<fontname> <italic> <bold> <fixed> <serif> <fraktur>  

fontname为字体名称,italic为斜体,bold为黑体字,fixed为默认字体,serif为衬线字体,fraktur德文黑字体,1和0代表有和无,精细区分时可使用。

字符矫正

打开jTessBoxEditor,BOX Editor -> Open,打开num.font.exp0.tif;矫正<Char>上的字符,记得<Page>有好多页噢!

 

修改后记得保存。

执行批处理文件

在目标目录下生成一个批处理文件

复制代码
rem 执行改批处理前先要目录下创建font_properties文件 
echo Run Tesseract
for Training.. tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train echo Compute the Character Set.. unicharset_extractor.exe num.font.exp0.box mftraining -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr echo Clustering.. cntraining.exe num.font.exp0.tr echo Rename Files.. rename normproto num.normproto rename inttemp num.inttemp rename pffmtable num.pffmtable rename shapetable num.shapetable echo Create Tessdata.. combine_tessdata.exe num.
echo.
& pause
复制代码

保存后执行即可,执行结果如图:

最终文件夹内会有以下文件,如图:

 

将生成的traineddata放入tessdata中

最后将num.trainddata复制到Tesseract-OCR中tessdata文件夹即可。

 

3、最后的测试

按照之前步骤,使用命令行输入

tesseract test.png output_2 -l num

我们可以看到新生成的文件output_2的内容为762408,内容完全正确。细心的人会发现,最后一句指令,我们使用了指令[-l num]而不是[-l eng]。这说明,最后一次转换我们使用的是新生成的num语言的匹配库而不是默认的eng语言匹配库。

 

 

我们可以看到,经过简单的训练,我们对于数字数据的转换准确率提高了很多。Tesseract的优点除了可以不断学习以外,还因为是使用C++写的开源程序,可以使用C#或者C++调用以及修改,很关键!

关于Tesseract,关于OCR,关于计算机,还有太多值得自己去学习,希望以后可以在这里记录下来。

### 回答1: tesseract-ocr是一种开源的OCR(光学字符识别)引擎,可以用于识别各种语言的文字。对于中文的文字识别,我们需要进行训练来构建一个适合中文的字库。 首先,我们需要准备一个包含足够多的中文字符的训练数据集。这些数据集可以包括手写字、印刷体字、不同字体和大小的字等。然后,我们需要将这些图片转换成tesseract-ocr可以识别的格式(比如tif或png格式)。 接下来,我们需要创建一个训练文件,该文件应该包含每个字符的图像文件名和相应的unicode编码。这可以通过编写一个脚本来实现。然后,我们使用tesseract-ocr训练命令对这些字符进行训练,生成一个字库文件(通常是一个.traineddata文件)。 训练命令的具体使用方法可以参考tesseract的官方文档。一般来说,我们需要指定训练数据集的路径、字库文件的输出路径以及其他一些配置参数,如迭代次数、学习率等。 训练完成后,我们可以将生成的字库文件放置到tesseract-ocr的语言包目录中。然后,使用tesseract-ocr的识别命令,指定使用中文字库进行识别。 需要注意的是,tesseract-ocr在识别中文时可能存在一些问题,特别是对于手写体和一些特殊字体。因此,我们需要对识别结果进行后处理,如去除一些错误的字符或进行字符校验。 总之,通过训练字库,我们可以使用tesseract-ocr来识别中文字符,为中文OCR应用提供支持。虽然训练过程需要一些时间和精力,但它可以提高对中文文字的准确识别率,并且允许我们自定义和扩展字库,以满足特定需求。 ### 回答2: Tesseract-OCR是一种强大的开源光学字符识别(OCR)引擎,可用于将印刷体文本转换为可编辑的文本格式。Tesseract能够识别多种语言,包括中文。 要让Tesseract识别中文,需进行一些额外的配置和训练。首先,你需要下载中文训练数据集,如chi_sim.traineddata。这个数据集包含了Tesseract学习如何识别中文字符的训练信息。 然后,将训练数据集放置在Tesseract训练数据目录下。接下来,你需要对Tesseract进行设置,以指定要使用训练数据集。这可以通过在代码中使用`TessBaseAPI`库和`SetVariable`函数来完成。 创建一个Tesseract实例后,你可以使用`SetVariable`函数设置`lang`变量为"chi_sim",以指定要使用训练数据集为中文。 之后,你可以加载要识别的图像,并使用`Recognize`函数将其识别为文本。Tesseract将尝试识别图像中的文字,并将结果返回为可编辑的文本。 以下是一个简单的示例代码: ```c #include <tesseract/baseapi.h> #include <leptonica/allheaders.h> int main() { // 创建Tesseract实例 tesseract::TessBaseAPI* api = new tesseract::TessBaseAPI(); // 设置要使用训练数据集为中文 api->SetVariable("lang", "chi_sim"); // 加载要识别的图像 Pix* image = pixRead("/path/to/your/image.png"); api->SetImage(image); // 进行识别 api->Recognize(0); // 获取识别结果 char* text = api->GetUTF8Text(); printf("识别结果:\n%s", text); // 释放资源 api->End(); delete[] text; pixDestroy(&image); return 0; } ``` 通过以上步骤,你可以使用Tesseract-OCR识别中文,并获取到识别结果。这样,你就可以将印刷体中文文本转换为可编辑的文本格式,便于进一步处理和使用。 ### 回答3: Tesseract-OCR是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,它最初由惠普实验室开发,现在由谷歌维护。它能够将图像中的文字转换成可编辑的文本,并且支持多种语言的识别,包括中文。 在Tesseract-OCR中识别中文的过程中,关键是配置合适的字库并进行训练。字库是一系列用于训练OCR引擎的字符图像和相应的字符编码的集合。 首先,我们需要准备一组中文字符的图像样本,这些样本应该尽量包含不同的字体、大小和风格。可以使用现有的中文字符数据集,或者手动收集一些样本。接下来,将这些字符图像转换为合适的格式,例如,可以将它们转换为tif格式。 然后,我们需要创建一个训练字库的配置文件。在这个配置文件中,我们需要指定字库的名称,训练过程中使用的字符集,以及其他相关的参数。可以通过编辑一个名为“unicharset”的文件来配置这些内容。 接下来,我们需要运行训练命令来训练字库。在命令行中,可以使用tesseract命令来运行训练过程。可以指定训练数据的路径、配置文件的路径和输出模型的路径。运行命令后,训练过程将会开始,并且会生成一个训练好的字库模型文件。 最后,我们可以使用训练好的字库模型来识别中文。在使用Tesseract-OCR进行中文识别时,我们可以通过设置识别语言为中文,以及加载之前训练好的字库模型来进行识别。 总结来说,在使用Tesseract-OCR识别中文的过程中,需要准备中文字符的图像样本,创建训练字库的配置文件,运行训练命令进行字库训练,最后使用训练好的字库模型进行中文识别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值