196.(802)找到最终的安全状态

题目描述:

在有向图中, 我们从某个节点和每个转向处开始, 沿着图的有向边走。 如果我们到达的节点是终点 (即它没有连出的有向边), 我们停止。

现在, 如果我们最后能走到终点,那么我们的起始节点是最终安全的。 更具体地说, 存在一个自然数 K,  无论选择从哪里开始行走, 我们走了不到 K 步后必能停止在一个终点。

哪些节点最终是安全的? 结果返回一个有序的数组。

该有向图有 N 个节点,标签为 0, 1, ..., N-1, 其中 N 是 graph 的节点数.  图以以下的形式给出: graph[i] 是节点 j 的一个列表,满足 (i, j) 是图的一条有向边。

示例:
输入:graph = [[1,2],[2,3],[5],[0],[5],[],[]]
输出:[2,4,5,6]
这里是上图的示意图。

Illustration of graph

提示:

graph 节点数不超过 10000.
图的边数不会超过 32000.
每个 graph[i] 被排序为不同的整数列表, 在区间 [0, graph.length - 1] 中选取。

思路:

不安全:该节点在一个环上;安全,该节点不在一个环上。

1、深度优先遍历每个节点的路径

2、给每个节点设定三种状态,未访问,安全,不安全

3、遍历未访问的节点时,先将节点设置为不安全,若节点的路径中存在不安全的节点,则直接返回该节点是不安全的,若最终没有路径中没有访问到不安全的节点,则返回该节点是安全的。

代码:

class Solution {
public:
    vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        int len=graph.size();
        vector<int>status(len,0);
        vector<int>res;
        for(int i=0;i<len;i++)
        {
            if(status[i]==0)function(graph,status,i);
            if(status[i]==1)res.push_back(i);
        }
        return res;
    }
    bool function(vector<vector<int>>& graph,vector<int>&status,int loc)
    {
        if(status[loc]==-1)return false;
        if(status[loc]==1)return true;
        if(graph[loc].size()==0)
        {
            status[loc]=1;
            return true;
        }
        status[loc]=-1;
        for(int i=0;i<graph[loc].size();i++)
        {
            if(status[graph[loc][i]]==-1)return false;
            if(status[graph[loc][i]]==0)
                if(!function(graph,status,graph[loc][i]))
                    return false;
        }
        status[loc]=1;
        return true;
    }
};

执行效率:

执行用时:356 ms, 在所有 C++ 提交中击败了56.07%的用户

内存消耗:46.2 MB, 在所有 C++ 提交中击败了61.57%的用户

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页