AcWing 5720. 相似度计算

5720. 相似度计算 - AcWing题库

题目描述

两个集合的 Jaccard 相似度定义为:

Sim(A,B)=|A∩B||A∪B|

交集的大小除以并集的大小

当集合 A和 B完全相同时,Sim(A,B)=1 取得最大值;当二者交集为Sim(A,B)=0 取得最小值。

除了进行简单的词频统计,小 P 还希望使用 Jaccard 相似度来评估两篇文章的相似性。

具体来说,每篇文章均由若干个英文单词组成,且英文单词仅包含“大小写英文字母”。

对于给定的两篇文章,小 P 首先需要提取出两者的单词集合 A和 B,即去掉各自重复的单词。

然后计算出:

  • |A∩B|,即有多少个不同的单词同时出现在两篇文章中;
  • |A∪B|,即两篇文章一共包含了多少个不同的单词。

最后再将两者相除即可算出相似度。

需要注意,在整个计算过程中应当忽略英文字母大小写的区别,比如 theThe 和 THE 三者都应被视作同一个单词。

试编写程序帮助小 P 完成前两步,计算出 |A∩B|和 |A∪B|;小 P将亲自完成最后一步的除法运算。

输入格式

输入共三行。

输入的第一行包含两个正整数 n和 m,分别表示两篇文章的单词个数。

第二行包含空格分隔的 n 个单词,表示第一篇文章;

第三行包含空格分隔的 m个单词,表示第二篇文章。

输出格式

输出共两行。

第一行输出一个整数 |A∩B|,即有多少个不同的单词同时出现在两篇文章中;

第二行输出一个整数 |A∪B|,即两篇文章一共包含了多少个不同的单词。

数据范围

全部的测试数据满足:1≤n,m≤10000且每个单词最多包含 10个字母。

输入样例1:
3 2
The tHe thE
the THE
输出样例1:
1
1
样例1解释

A=B=A∩B=A∪B={the}

输入样例2:
9 7
Par les soirs bleus dete jirai dans les sentiers
PICOTE PAR LES BLES FOULER LHERBE MENUE
输出样例2:
2
13
样例2解释

A={bleus, dans, dete, jirai, les, par, sentiers, soirs}|A|=8

B={bles, fouler, les, lherbe, menue, par, picote}|B|=7

A∩B={les, par}|A∩B|=2

代码功能说明
读取两个整数 n 和 m,分别表示两个集合的元素数量
读取 n 个字符串到集合 a 中,同时也放入集合 c 中
读取 m 个字符串到集合 b 中,同时也放入集合 c 中
所有字符串都会转换为小写字母处理(忽略大小写
输出两个统计结果:
第一个结果:两个集合的并集大小(a.size() + b.size() - c.size())
第二个结果:两个集合的交集大小(c.size())
关键知识点
使用 unordered_set<string> 存储字符串集合,自动去重且查找效率高
tolower(c) 将字符转换为小写,实现了大小写不敏感的比较
集合运算的数学原理:
并集大小 = A 的大小 + B 的大小 - 交集的大小
这里的集合 c 实际上存储的是 A 和 B 的交集
在集合论中,并集和交集是两种基本的集合运算,它们的含义和结果有显著区别:
1. 并集(Union)
定义:由属于集合 A 或 属于集合 B 的所有元素组成的集合。
符号表示:A ∪ B(读作 “A 并 B”)
逻辑关系:“或”(只要属于其中一个集合即可)
示例:
若 A = {1, 2, 3},B = {3, 4, 5}
则 A ∪ B = {1, 2, 3, 4, 5}(包含 A 和 B 的所有元素,重复元素只保留一次
2. 交集(Intersection)
定义:由同时属于集合 A 且 属于集合 B 的元素组成的集合。
符号表示:A ∩ B(读作 “A 交 B”)
逻辑关系:“且”(必须同时属于两个集合)
示例:
若 A = {1, 2, 3},B = {3, 4, 5}
则 A ∩ B = {3}(只有 3 同时存在于两个集合中)
直观理解
可以用韦恩图表示:
并集(A ∪ B)是两个圆圈覆盖的全部区域
交集(A ∩ B)是两个圆圈重叠的区域
例如,在你提供的代码中:
变量c实际存储的是 A 和 B 的并集(所有出现在 A 或 B 中的元素)
代码中计算的a.size() + b.size() - c.size()其实是并集的大小
而 A 和 B 的交集大小需要通过其他方式计算(例如统计同时出现在 A 和 B 中的元素数量)
 

AC代码如下

#include <bits/stdc++.h>
using namespace std;

int main(){
    int n, m;               // n:第一个集合元素数量,m:第二个集合元素数量
    unordered_set<string> a, b, c;  // a:第一个集合,b:第二个集合,c:临时集合
    cin>>n>>m;
    while (n -- ) {
        string s;
        cin >> s;
        for (auto& c: s) c = tolower(c);  // 转换为小写(忽略大小写)
        a.insert(s);  // 存入集合a
        c.insert(s);  // 同时存入集合c
}
    while (m -- ) {
        string s;
        cin >> s;
        for (auto& c: s) c = tolower(c);  // 同样转为小写
        b.insert(s);  // 存入集合b
        c.insert(s);  // 同时存入集合c
}
    // 第一个输出:a和b的并集大小
    cout << a.size() + b.size() - c.size() << endl;
    // 第二个输出:c的大小(实际也是并集大小)
    cout << c.size() << endl;
    
    return 0;
}

总结
这段代码的核心功能是:
1.读取两个字符串集合,忽略大小写差异。
2.计算并输出两个集合的并集大小(重复输出了两次)。
若需计算交集,需要额外编写逻辑判断元素是否同时存在于两个集合中。

### 问题分析 Acwing 4925. 干衣机 是一道典型的二分答案题目,主要涉及对时间的优化判断。题意大致如下: - 给定一个洗衣机,它在每单位时间可以处理一件衣服。 - 每件衣服有一个初始湿度值。 - 在每一单位时间中,可以选择一件衣服将其放入洗衣机中脱水(湿度减少1),其余衣服的湿度也会自然减少1(但不能低于0)。 - 要求计算将所有衣服的湿度降到0所需的最短时间。 为了解决这个问题,需要结合贪心策略与二分查找技术来优化时间复杂度。 ### 解题思路 #### 1. 二分查找时间范围 由于目标是找到“最短时间”,可以采用二分法来尝试不同的时间值 `t`,并验证是否可以在该时间内完成任务。 - 最小时间为 `max(a)`(即所有衣服中最高峰值,若不考虑其他衣服自然干燥的情况) - 最大时间上限可以设定为最大湿度值加上衣服总数的影响。 #### 2. 验证函数设计 对于给定的时间 `t`,我们需要判断是否能在此时间内使所有衣服湿度归零。 具体来说: - 对于某件衣服湿度 `a[i]`,如果 `a[i] > t`,则必须至少手动操作 `a[i] - t` 次才能让其湿度降为0。 - 所有这些操作次数之和应小于等于 `t`,因为每单位时间只能操作一次。 #### 3. 实现代码 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; bool check(const vector<int>& a, int t) { long long need = 0; for (int x : a) { if (x > t) { need += x - t; } } return need <= t; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int left = 0, right = 1e9; while (left < right) { int mid = (left + right) / 2; if (check(a, mid)) { right = mid; } else { left = mid + 1; } } cout << left << endl; return 0; } ``` ### 复杂度分析 - 时间复杂度:`O(n log M)`,其中 `n` 是衣服数量,`M` 是最大可能时间上限(约 `1e9`)。 - 空间复杂度:`O(1)`,仅使用常数额外空间。 ### 总结 本题通过二分法快速逼近最优解,并在每次判断中使用线性扫描验证可行性,是一种高效且常见的算法组合应用。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值