题目描述
两个集合的 Jaccard 相似度定义为:
Sim(A,B)=|A∩B||A∪B|
即交集的大小除以并集的大小。
当集合 A和 B完全相同时,Sim(A,B)=1 取得最大值;当二者交集为Sim(A,B)=0 取得最小值。
除了进行简单的词频统计,小 P 还希望使用 Jaccard 相似度来评估两篇文章的相似性。
具体来说,每篇文章均由若干个英文单词组成,且英文单词仅包含“大小写英文字母”。
对于给定的两篇文章,小 P 首先需要提取出两者的单词集合 A和 B,即去掉各自重复的单词。
然后计算出:
- |A∩B|,即有多少个不同的单词同时出现在两篇文章中;
- |A∪B|,即两篇文章一共包含了多少个不同的单词。
最后再将两者相除即可算出相似度。
需要注意,在整个计算过程中应当忽略英文字母大小写的区别,比如 the、The 和 THE 三者都应被视作同一个单词。
试编写程序帮助小 P 完成前两步,计算出 |A∩B|和 |A∪B|;小 P将亲自完成最后一步的除法运算。
输入格式
输入共三行。
输入的第一行包含两个正整数 n和 m,分别表示两篇文章的单词个数。
第二行包含空格分隔的 n 个单词,表示第一篇文章;
第三行包含空格分隔的 m个单词,表示第二篇文章。
输出格式
输出共两行。
第一行输出一个整数 |A∩B|,即有多少个不同的单词同时出现在两篇文章中;
第二行输出一个整数 |A∪B|,即两篇文章一共包含了多少个不同的单词。
数据范围
全部的测试数据满足:1≤n,m≤10000且每个单词最多包含 10个字母。
输入样例1:
3 2
The tHe thE
the THE
输出样例1:
1
1
样例1解释
A=B=A∩B=A∪B={the}
输入样例2:
9 7
Par les soirs bleus dete jirai dans les sentiers
PICOTE PAR LES BLES FOULER LHERBE MENUE
输出样例2:
2
13
样例2解释
A={bleus, dans, dete, jirai, les, par, sentiers, soirs}|A|=8
B={bles, fouler, les, lherbe, menue, par, picote}|B|=7
A∩B={les, par}|A∩B|=2
代码功能说明
读取两个整数 n 和 m,分别表示两个集合的元素数量
读取 n 个字符串到集合 a 中,同时也放入集合 c 中
读取 m 个字符串到集合 b 中,同时也放入集合 c 中
所有字符串都会转换为小写字母处理(忽略大小写)
输出两个统计结果:
第一个结果:两个集合的并集大小(a.size() + b.size() - c.size())
第二个结果:两个集合的交集大小(c.size())
关键知识点
使用 unordered_set<string> 存储字符串集合,自动去重且查找效率高
tolower(c) 将字符转换为小写,实现了大小写不敏感的比较
集合运算的数学原理:
并集大小 = A 的大小 + B 的大小 - 交集的大小
这里的集合 c 实际上存储的是 A 和 B 的交集
在集合论中,并集和交集是两种基本的集合运算,它们的含义和结果有显著区别:
1. 并集(Union)
定义:由属于集合 A 或 属于集合 B 的所有元素组成的集合。
符号表示:A ∪ B(读作 “A 并 B”)
逻辑关系:“或”(只要属于其中一个集合即可)
示例:
若 A = {1, 2, 3},B = {3, 4, 5}
则 A ∪ B = {1, 2, 3, 4, 5}(包含 A 和 B 的所有元素,重复元素只保留一次)
2. 交集(Intersection)
定义:由同时属于集合 A 且 属于集合 B 的元素组成的集合。
符号表示:A ∩ B(读作 “A 交 B”)
逻辑关系:“且”(必须同时属于两个集合)
示例:
若 A = {1, 2, 3},B = {3, 4, 5}
则 A ∩ B = {3}(只有 3 同时存在于两个集合中)
直观理解
可以用韦恩图表示:
并集(A ∪ B)是两个圆圈覆盖的全部区域
交集(A ∩ B)是两个圆圈重叠的区域
例如,在你提供的代码中:
变量c实际存储的是 A 和 B 的并集(所有出现在 A 或 B 中的元素)
代码中计算的a.size() + b.size() - c.size()其实是并集的大小
而 A 和 B 的交集大小需要通过其他方式计算(例如统计同时出现在 A 和 B 中的元素数量)
AC代码如下
#include <bits/stdc++.h>
using namespace std;
int main(){
int n, m; // n:第一个集合元素数量,m:第二个集合元素数量
unordered_set<string> a, b, c; // a:第一个集合,b:第二个集合,c:临时集合
cin>>n>>m;
while (n -- ) {
string s;
cin >> s;
for (auto& c: s) c = tolower(c); // 转换为小写(忽略大小写)
a.insert(s); // 存入集合a
c.insert(s); // 同时存入集合c
}
while (m -- ) {
string s;
cin >> s;
for (auto& c: s) c = tolower(c); // 同样转为小写
b.insert(s); // 存入集合b
c.insert(s); // 同时存入集合c
}
// 第一个输出:a和b的并集大小
cout << a.size() + b.size() - c.size() << endl;
// 第二个输出:c的大小(实际也是并集大小)
cout << c.size() << endl;
return 0;
}
总结
这段代码的核心功能是:
1.读取两个字符串集合,忽略大小写差异。
2.计算并输出两个集合的并集大小(重复输出了两次)。
若需计算交集,需要额外编写逻辑判断元素是否同时存在于两个集合中。
1361

被折叠的 条评论
为什么被折叠?



