Given an integer n, return 1 - n in lexicographical order.
For example, given 13, return: [1,10,11,12,13,2,3,4,5,6,7,8,9].
Please optimize your algorithm to use less time and space. The input size may be as large as 5,000,000.
思路:每次加入都找到当前数的下一个值是什么,首先是再后面加零,即乘以10,如果得到的结果>n;那么就要使该数字倒数第一个非零的数加1,再次重复;如果是在最后一位非零,且下一个数不会加到10进位,则直接加1.
vector<int> lexicalOrder(int n) {
int cur=1;
vector<int> r;
for(int i=0;i<n;i++)
{
r.push_back(cur);
if(cur*10<=n)//优先考虑加0,即乘以10
cur*=10;
else if(cur%10!=9&&cur<n)//乘以10超过界限,加1直至加到最后一位为9或者达到界限
cur++;
else
{
cur=cur/10+1;//倒数最后一位非零位要进位,如19的下一个是2,或达到最大
while(cur%10==0)//只要cur的末尾为0,就继续找最后的非零位,如 199,199/10+1=20;它的下一位应从首个不为0的2开始
cur/=10;
}
}
return r;
}