codeforces160D Edges in MST

https://codeforces.com/problemset/problem/160/D

其实以前18徐州现场做A的时候就思考过最小生成树哪些边是必选的,今天uoj群有人讨论这个问题,然后claris说必选就是桥边,于是搜最小生成树桥边搜出来了一个原题

这题只有2300?感觉比一般的2400还要难,可能在以前是个Well Known的问题

最小生成树很常见的性质:如果一条边能够是另外一棵最小生成树上的边,那么对于这一棵最小生成树上u到v的路径中边的最大值,这条边的值一定等于最大值。

证明:如果这条边<这个最大值,那么一定会选这条边替换掉那条最大值的边,然而整棵树还是联通的,如果这条边大于这个值,则不可能选到这条边,因为比他小的边已经把他的连通性贡献占用了,必选不到他。

于是这题我们只需要按照边的权值排序。

对于一系列权值=x的边,我们知道,如果把权值比他小的边全部连上了,再连这条边还是可以让连并查集,说明他是可以被选为某棵最小生成树中的边的,标记为1,也就是可选,如果不行,则像上面证明所说的,必选不到他

难点在于如何确定他是必选的:根据以上性质,对于这些权值=x的边,如果某条边去掉,某两个连通块就无法连到一起,那么说明这条边就是必选的。

那么如果我们把这些权值相等的边全部连起来,而且是只连连通块的在并查集中根节点,这些边其实就是桥,用tarjan跑一遍就行了。由于每条边只会连一次,那么总共的点数只有2m,所以复杂度是O(mlogm),也就是对边排序的部分

这些全部做完之后,再把这些边更新并查集,想最小生成树一样能并就并。

双向边数组又忘开两倍了。。。T了好久,睡一觉起来打了10分钟osu!就找到了(疯狂摸鱼

#include<bits/stdc++.h>
using namespace std;

const int maxl=1e5+10;

int n,m,cnt,ind;
struct edge
{
	int u,v,w,id;
}b[maxl];
struct ed
{
	int to,nxt,id;
}e[maxl<<1];
int f1[maxl],f2[maxl],ans[maxl],ehead[maxl];
int dfn[maxl],low[maxl];
vector <int> tmp;

inline bool cmp(edge &a,edge &b)
{
	return a.w<b.w;
}

inline void prework()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&b[i].u,&b[i].v,&b[i].w);
		b[i].id=i;
	}
	sort(b+1,b+1+m,cmp);
}

inline int find1(int x)
{
	if(f1[x]!=x)
		f1[x]=find1(f1[x]);
	return f1[x];
}

inline int find2(int x)
{
	if(f2[x]!=x)
		f2[x]=find2(f2[x]);
	return f2[x];
}

inline void tarjan(int u,int in_ed)
{
	int v;dfn[u]=low[u]=++ind; 
	for(int i=ehead[u];i;i=e[i].nxt)
	{
		v=e[i].to;
		if(!dfn[v])
		{
			tarjan(v,i);
			low[u]=min(low[u],low[v]);
			if(low[v]>dfn[u])
				ans[e[i].id]=2;
		}
		else if(in_ed!=(i^1))
			low[u]=min(low[u],low[v]);
	}
}

inline void add(int u,int v,int id)
{
	e[++cnt].to=v;e[cnt].id=id;
	e[cnt].nxt=ehead[u];ehead[u]=cnt;
}

inline void mainwork()
{
	for(int i=1;i<=n;i++)
		f1[i]=f2[i]=i;
	int x,y;
	for(int i=1;i<=m;i++)
	{
		tmp.clear();
		for(int j=i;j<=m && b[j].w==b[i].w;j++)
		{
			x=find1(b[j].u);
			y=find1(b[j].v);
			if(x!=y)
			{
				ans[b[j].id]=1;
				tmp.push_back(x);
				tmp.push_back(y);
			}
		}
		for(int d:tmp)
			ehead[d]=0,dfn[d]=low[d]=0;
		cnt=1;ind=0;
		for(int j=i;j<=m && b[j].w==b[i].w;j++)
		{
			x=find1(b[j].u);
			y=find1(b[j].v);
			if(x!=y)
				add(x,y,b[j].id),add(y,x,b[j].id);
		}
		for(int d:tmp)
		if(!dfn[d])
			tarjan(d,0);
		for(int j=i;j<=m && b[j].w==b[i].w;j++)
		{
			x=find1(b[j].u);
			y=find1(b[j].v);
			if(x!=y)
				f1[y]=x;
			i=j;
		}
	}
	
}

inline void print()
{
	for(int i=1;i<=m;i++)
	if(ans[i]==2)
		puts("any")	;
	else if(ans[i]==1)
		puts("at least one");
	else
		puts("none");
		
}

int main()
{
	prework();
	mainwork();
	print();
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分抄代码

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值