https://codeforces.com/problemset/problem/160/D
其实以前18徐州现场做A的时候就思考过最小生成树哪些边是必选的,今天uoj群有人讨论这个问题,然后claris说必选就是桥边,于是搜最小生成树桥边搜出来了一个原题
这题只有2300?感觉比一般的2400还要难,可能在以前是个Well Known的问题
最小生成树很常见的性质:如果一条边能够是另外一棵最小生成树上的边,那么对于这一棵最小生成树上u到v的路径中边的最大值,这条边的值一定等于最大值。
证明:如果这条边<这个最大值,那么一定会选这条边替换掉那条最大值的边,然而整棵树还是联通的,如果这条边大于这个值,则不可能选到这条边,因为比他小的边已经把他的连通性贡献占用了,必选不到他。
于是这题我们只需要按照边的权值排序。
对于一系列权值=x的边,我们知道,如果把权值比他小的边全部连上了,再连这条边还是可以让连并查集,说明他是可以被选为某棵最小生成树中的边的,标记为1,也就是可选,如果不行,则像上面证明所说的,必选不到他
难点在于如何确定他是必选的:根据以上性质,对于这些权值=x的边,如果某条边去掉,某两个连通块就无法连到一起,那么说明这条边就是必选的。
那么如果我们把这些权值相等的边全部连起来,而且是只连连通块的在并查集中根节点,这些边其实就是桥,用tarjan跑一遍就行了。由于每条边只会连一次,那么总共的点数只有2m,所以复杂度是O(mlogm),也就是对边排序的部分
这些全部做完之后,再把这些边更新并查集,想最小生成树一样能并就并。
双向边数组又忘开两倍了。。。T了好久,睡一觉起来打了10分钟osu!就找到了(疯狂摸鱼
#include<bits/stdc++.h>
using namespace std;
const int maxl=1e5+10;
int n,m,cnt,ind;
struct edge
{
int u,v,w,id;
}b[maxl];
struct ed
{
int to,nxt,id;
}e[maxl<<1];
int f1[maxl],f2[maxl],ans[maxl],ehead[maxl];
int dfn[maxl],low[maxl];
vector <int> tmp;
inline bool cmp(edge &a,edge &b)
{
return a.w<b.w;
}
inline void prework()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&b[i].u,&b[i].v,&b[i].w);
b[i].id=i;
}
sort(b+1,b+1+m,cmp);
}
inline int find1(int x)
{
if(f1[x]!=x)
f1[x]=find1(f1[x]);
return f1[x];
}
inline int find2(int x)
{
if(f2[x]!=x)
f2[x]=find2(f2[x]);
return f2[x];
}
inline void tarjan(int u,int in_ed)
{
int v;dfn[u]=low[u]=++ind;
for(int i=ehead[u];i;i=e[i].nxt)
{
v=e[i].to;
if(!dfn[v])
{
tarjan(v,i);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])
ans[e[i].id]=2;
}
else if(in_ed!=(i^1))
low[u]=min(low[u],low[v]);
}
}
inline void add(int u,int v,int id)
{
e[++cnt].to=v;e[cnt].id=id;
e[cnt].nxt=ehead[u];ehead[u]=cnt;
}
inline void mainwork()
{
for(int i=1;i<=n;i++)
f1[i]=f2[i]=i;
int x,y;
for(int i=1;i<=m;i++)
{
tmp.clear();
for(int j=i;j<=m && b[j].w==b[i].w;j++)
{
x=find1(b[j].u);
y=find1(b[j].v);
if(x!=y)
{
ans[b[j].id]=1;
tmp.push_back(x);
tmp.push_back(y);
}
}
for(int d:tmp)
ehead[d]=0,dfn[d]=low[d]=0;
cnt=1;ind=0;
for(int j=i;j<=m && b[j].w==b[i].w;j++)
{
x=find1(b[j].u);
y=find1(b[j].v);
if(x!=y)
add(x,y,b[j].id),add(y,x,b[j].id);
}
for(int d:tmp)
if(!dfn[d])
tarjan(d,0);
for(int j=i;j<=m && b[j].w==b[i].w;j++)
{
x=find1(b[j].u);
y=find1(b[j].v);
if(x!=y)
f1[y]=x;
i=j;
}
}
}
inline void print()
{
for(int i=1;i<=m;i++)
if(ans[i]==2)
puts("any") ;
else if(ans[i]==1)
puts("at least one");
else
puts("none");
}
int main()
{
prework();
mainwork();
print();
return 0;
}