Ubuntu14.04上安装pip的方法
在Ubuntu14.04上,建议通过下面的方法安装,这是一种通用的方法,也适用于Windows,当然在Windows下
手动下载下来就行了
wget https://bootstrap.pypa.io/get-pip.py --no-check-certificate
sudo python get-pip.py
在Ubuntu下安装、配置和测试cuda
http://blog.csdn.net/menglongbor/article/details/7015380
http://www.linuxdiyf.com/linux/2699.html
搭建chainer的gpu 环境的需要安装的一些东西的顺序:
1、显卡驱动,具体安装方式比较复杂,查看上一篇日志,不过这个很折腾,另一个同事搞的
查看显卡驱动是否安装成功的方法
nvidia-smi
或者 cat /proc/driver/nvidia/version
2、安装cuda,具体安装方法上一篇日志
查看cuda是否安装成功的方法:
nvcc -V
3、安装pip,安装方法见上,
4、安装chainer需要的包,numpy,six
sudo pip install numpy
貌似装过numpy之后six 就自动装上了 应该是six是numpy的依赖
5、安装python-dev,原因是chainer是依赖c语言的包,需要装c的编译,大概是这个意思
安装方法
sudo apt-get install python-dev
报错的话,是python版本问题
解决方法如下:
用aptitude 工具可以搞定
先:sudo apt-get install aptitude
然后:
sudo aptitude install python-dev
下列“新”软件包将被安装。
python-dev python2.7-dev{ab}
0 个软件包被升级,新安装 2 个, 0 个将被删除, 同时 0 个将不升级。
需要获取 29.5 MB 的存档。 解包后将要使用 39.3 MB。
下列软件包存在未满足的依赖关系:
python2.7-dev : 依赖: python2.7 (= 2.7.3-0ubuntu3) 但是 2.7.3-0ubuntu3.1 已安装。
依赖: libpython2.7 (= 2.7.3-0ubuntu3) 但是 2.7.3-0ubuntu3.1 已安装。
依赖: libexpat1-dev 但它将不会被安装。
依赖: libssl-dev 但它将不会被安装。
下列动作将解决这些依赖关系:
保持 下列软件包于其当前版本:
1) python-dev [未安装的]
2) python2.7-dev [未安装的]
是否接受该解决方案?[Y/n/q/?] n
下列动作将解决这些依赖关系:
安装 下列软件包:
1) libexpat1-dev [2.0.1-7.2ubuntu1 (precise)]
2) libssl-dev [1.0.1-4ubuntu3 (precise)]
3) libssl-doc [1.0.1-4ubuntu3 (precise)]
降级 下列软件包:
4) libexpat1 [2.0.1-7.2ubuntu1.1 (now) -> 2.0.1-7.2ubuntu1 (precise)]
5) libpython2.7 [2.7.3-0ubuntu3.1 (now) -> 2.7.3-0ubuntu3 (precise)]
6) libssl1.0.0 [1.0.1-4ubuntu5.7 (now) -> 1.0.1-4ubuntu3 (precise)]
7) python2.7 [2.7.3-0ubuntu3.1 (now) -> 2.7.3-0ubuntu3 (precise)]
8) python2.7-minimal [2.7.3-0ubuntu3.1 (now) -> 2.7.3-0ubuntu3 (precise)]
是否接受该解决方案?[Y/n/q/?] y
下列软件包将被“降级”:
libexpat1 libpython2.7 libssl1.0.0 python2.7 python2.7-minimal
下列“新”软件包将被安装。
libexpat1-dev{a} libssl-dev{a} libssl-doc{a} python-dev python2.7-dev{a}
0 个软件包被升级,新安装 5 个, 5 个被降级, 0 个将被删除, 同时 0 个将不升级。
需要获取 39.0 MB 的存档。 解包后将要使用 47.8 MB。
您要继续吗?[Y/n/?] y
5、安装chainer
sudo pip install chainer
如果安装chainer没有报错的话,测试环境是否搭建成功:
进入python
import numpy as np
import chainer
from chainer import cuda
withcupy.cuda.Device(1):
x_on_gpu1=cupy.array([1,2,3,4,5])
x_cpu=np.ones((5,4,3),dtype=np.float32)
x_gpu=cuda.to_gpu(x_cpu,device=1)